

White Paper
Fabasoft app.ducx Expressions

2025 July Release

 Fabasoft app.ducx Expressions 2

Copyright © Fabasoft R&D GmbH, Linz, Austria, 2025.

All rights reserved. All hardware and software names used are registered

trade names and/or registered trademarks of the respective manufacturers.

No rights to our software or our professional services, or results of our

professional services, or other protected rights can be based on the handing

over and presentation of these documents.

 Fabasoft app.ducx Expressions 3

Contents

1 Fabasoft app.ducx Expressions ___ 6

1.1 General Remarks Concerning app.ducx Expression Language .. 6

1.1.1 Evaluating Expressions at Runtime.. 6

1.1.2 Testing Expressions ... 6

1.1.3 Tracing in app.ducx Expression Language ... 6

1.2 Names ... 7

1.3 Scopes ... 7

1.4 Types ... 8

1.4.1 Boolean .. 10

1.4.2 Integer .. 10

1.4.3 Float.. 10

1.4.4 String .. 10

1.4.5 Datetime/Date .. 11

1.4.6 Currency .. 13

1.4.7 Content .. 13

1.4.8 Dictionary .. 14

1.4.9 Object ... 14

1.4.10 Any ... 15

1.5 Variables ... 15

1.5.1 Redeclaration of Variables .. 16

1.5.2 Declaration of Available Variables ... 17

1.5.3 Declaration of Dictionary Members .. 17

1.6 Operators ... 17

1.6.1 Assignment Operators .. 17

1.6.2 Logical Operators ... 18

1.6.3 Calculation Operators .. 19

1.6.4 Comparison Operators .. 22

1.6.5 Conditional Operator ... 26

1.6.6 Selection Operator ... 26

1.6.7 $ Operator ... 27

1.6.8 # Operator... 27

1.7 Predefined Variables and Functions ... 28

 Fabasoft app.ducx Expressions 4

1.7.1 Predefined Variables .. 28

1.7.2 Popular Kernel Methods ... 29

1.7.3 Working With Contents ... 30

1.7.4 Working With Dictionaries .. 30

1.7.5 Getting the Data Type of an Expression.. 31

1.7.6 String Functions .. 31

1.7.7 List Functions .. 34

1.7.8 Mathematical Functions .. 35

1.7.9 Escape Sequences for Special Characters .. 36

1.8 Getting and Setting Property Values .. 37

1.9 Invoking Use Cases ... 38

1.10 Calculated Identifiers / Dynamic Invocation .. 39

1.11 Accessing the Transaction Context ... 40

1.12 Control Flow ... 44

1.12.1 Conditions ... 44

1.12.2 Loops ... 45

1.12.3 Exceptions and Error Handling .. 46

1.12.4 Creating New Transactions or Opening a Transaction Scope 47

1.12.5 Returning Values .. 48

1.12.6 Directives ... 49

1.13 Searching for Objects – app.ducx Integrated Query .. 50

1.13.1 FROM Clause ... 51

1.13.2 WHERE Clause .. 51

1.13.3 SELECT Clause ... 52

1.13.4 Options .. 52

1.14 Grammar of the app.ducx Expression Language ... 52

1.15 Kernel Interfaces: Searching for Objects ... 54

1.15.1 Options .. 55

1.15.2 Properties .. 56

1.15.3 Classes ... 56

1.15.4 Object List ... 57

1.15.5 Condition ... 57

1.15.6 Search Query Examples .. 58

1.15.7 Query Arguments ... 59

1.15.8 Grammar of the Kernel Interfaces Query Language ... 59

 Fabasoft app.ducx Expressions 5

1.15.9 Grammar of the Kernel Interfaces Expression Language .. 60

 Fabasoft app.ducx Expressions 6

1 Fabasoft app.ducx Expressions

app.ducx Expression Language is a proprietary interpreted script language that allows you to

access the object model, and to invoke use cases. app.ducx expressions can be embedded in

expression blocks and other language elements of the domain-specific languages of Fabasoft

app.ducx. This chapter introduces the app.ducx Expression Language.

Note: The grammar of the app.ducx Expression Language can be found in chapter 1.14

“Grammar of the app.ducx Expression Language”. The syntax for search queries is available in

chapter 1.15.8 “Grammar of the Kernel Interfaces Query Language”.

1.1 General Remarks Concerning app.ducx Expression Language

app.ducx Expression Language is a distinct domain-specific language of Fabasoft app.ducx.

app.ducx expressions can be embedded inline in an expression block in other domain-specific

languages. However, it is also possible to create separate .ducx-xp files containing app.ducx

expressions. app.ducx expression language files can be referenced from other domain-specific

languages using the file keyword.

The app.ducx expression language is processed by the Fabasoft app.ducx compiler and

transformed into Fabasoft app.ducx Expressions, which are evaluated at runtime by the kernel.

Keywords, predefined functions and predefined variables are not case sensitive.

1.1.1 Evaluating Expressions at Runtime

In the first step, the expression code is parsed. An expression can be parsed at runtime by

calling the Parse method of the runtime. The Parse method returns an expression object

(which is not related to an object stored in the domain). In a second step, the Evaluate method

is invoked on the expression object for evaluating the expression. The scopes to be used during

the evaluation of the expression must be passed to the Evaluate method. The result of the

evaluation is passed back in the return value of the Evaluate method.

1.1.2 Testing Expressions

By selecting some expression code in any app.ducx file, this code can be executed against the

installation.

1.1.3 Tracing in app.ducx Expression Language

Using app.ducx expression language, you can write trace messages to the Fabasoft app.ducx

Tracer.

For writing messages and variable values to the trace output, you can either use the %%TRACE

directive or the Trace method of the runtime.

If you pass two arguments to the Trace method of the runtime, the first argument is

interpreted as a message while the second argument is treated as the actual value.

The %%TRACE directive can also be used to trace special objects like cootx to output all

transaction variables defined for a transaction or coometh to output all set parameters within

the implementation of a method.

 Fabasoft app.ducx Expressions 7

Note:

• Values traced using the %%TRACE directive are only written to the Fabasoft app.ducx Tracer if

trace mode is enabled for the corresponding software component whereas values traced

using the Trace method of the runtime are always written to the Fabasoft app.ducx Tracer.

• Keep in mind that the %%TRACE directive only works for method implementation and

customization points.

Example

// Tracing string messages

coort.Trace("This message is written to the trace output");

// Tracing variable values

string mystrvar = "Hello world!";

object myobjvar = cooroot;

coort.Trace("Value of mystrvar", mystrvar);

coort.Trace("Value of myobjvar", myobjvar);

// Trace directives are only evaluated if the software component

// is in trace mode

%%TRACE("Value of mystrvar", mystrvar);

%%TRACE("Value of myobjvar", myobjvar);

// Tracing local and global scope

coort.Trace("Local variables", this);

coort.Trace("Global variables",::this);

1.2 Names

A name is a letter, followed by letters, digits and the underscore ‘_’ symbol. Keywords of the

app.ducx languages are generally not allowed as valid identifiers with some exceptions. Names

are used to reference all types of objects, i.e. use cases, functions, variables, interfaces in the

Fabasoft Folio environment, optionally prefixed with a software component.

1.3 Scopes

A scope is similar to a container holding a value that is accessible during the evaluation of an

expression. The following distinct scopes are available to you when an expression is evaluated:

• local scope, which is accessed using the operator :>

• global scope, which is accessed using the operator ::

• temporary scope, which is accessed using the operator @

You can use the keyword this along with the corresponding operator to access the value of a

scope (e.g. :>this yields the value of the local scope, and ::this the value of the global scope).

However, in most cases the keyword this can be omitted. When accessing the local scope, you

can also omit the operator :> in most cases.

Note: Inside the selection operator [] for selecting values of lists or compound properties, the

:> operator is required to access the local scope.

The keyword declare is used to declare an identifier. The Fabasoft app.ducx compiler

automatically generates identifier declarations for use case parameters to allow access to

parameters over the local scope when implementing a use case in app.ducx expression

language.

For the following example, assume that the local scope this contains an instance of object

class APPDUCXSAMPLE@200.200:Order, and that the temporary variable @customer contains an

 Fabasoft app.ducx Expressions 8

instance of object class FSCFOLIO@1.1001:ContactPerson.

APPDUCXSAMPLE@200.200:customerorders is an object list pointing to instances of object class

APPDUCXSAMPLE@200.200:Order. Within the square brackets put after

APPDUCXSAMPLE@200.200:customerorders, this has a different meaning as it refers to each

instance stored in the object list, and not to the local scope.

Example

ContactPerson @customer;

// Returns a STRINGLIST containing the names of all orders in property

// APPDUCXSAMPLE@200.200:customerorders

@customer.customerorders[objname];

// Returns an OBJECTLIST containing the orders whose name is identical to

// the name of the order in the local scope

@customer.customerorders[objname == :>objname];

In the following example, two strings, isbn and title, are declared in the local scope this. The

temporary variable @publication is initialized with a dictionary consisting of two properties,

isbn and title that in turn are initialized using the two strings isbn and title from the local

scope.

Note: Within the scope of the curly braces or square brackets if used with filter expressions,

when using the assignment operator “=”, this refers to the compound structure itself. To

access the local scope, the :> operator must be used.

Example

string isbn = "000-0-00000-000-0";

string title = "An Introduction to Fabasoft app.ducx";

dictionary @publication = { isbn = :>isbn, title = :>title };

For better readability, the "JSON" notation could be used. In this notation, the scope does not

change.

Example

string isbn = "000-0-00000-000-0";

string title = "An Introduction to Fabasoft app.ducx";

dictionary @publication = { isbn : isbn, title : title };

The temporary scope @this is used for storing temporary values during the evaluation of an

expression. Local scope this and global scope ::this are similar to parameters, and can be

populated with any valid value when the Evaluate method is called for evaluating an

expression.

The scopes cannot be changed while an expression is evaluated. However, you can add or

modify dictionary entries if a scope contains a dictionary.

1.4 Types

Types can be categorized into basic types and user-defined types (such as classes, structs, and

enums). In addition, types can be categorized into scalar types and list types.

The following basic types are most common and are built into the language. These types have a

corresponding type definition in the object model, as shown in following table.

 Fabasoft app.ducx Expressions 9

Basic Type Corresponding Type Object

boolean COOSYSTEM@1.1:BOOLEAN

integer COOSYSTEM@1.1:INTEGER

float COOSYSTEM@1.1:FLOAT

string COOSYSTEM@1.1:STRING

date, datetime COOSYSTEM@1.1:DATETIME

currency COOSYSTEM@1.1:Currency

content COOSYSTEM@1.1:CONTENT

dictionary COOSYSTEM@1.1:DICTIONARY

object COOSYSTEM@1.1:OBJECT

Note: The special value null represents the absence of data for all types. It is commonly

assigned to variables to indicate that they currently do not reference any valid object or value.

In addition to scalar types, list types group multiple values together. Some list types have

corresponding type definitions in the object model, as shown in following table.

Keyword Type Definition

boolean[] COOSYSTEM@1.1:BOOLEANLIST

integer[] COOSYSTEM@1.1:INTEGERLIST

float[] COOSYSTEM@1.1:FLOATLIST

string[] COOSYSTEM@1.1:STRINGLIST

date[], datetime[] COOSYSTEM@1.1:DATETIMELIST

content[] COOSYSTEM@1.1:CONTENTLIST

dictionary[] COOSYSTEM@1.1:DICTIONARYLIST

object[] COOSYSTEM@1.1:OBJECTLIST

Elements of a list can be retrieved using the selection operator (see chapter 1.6.6 “Selection

Operator”).

More information about operators can be found in chapter 1.6 “Operators”.

Some types support using kernel methods to work with values. The usage of the generic kernel

methods may provide a more generic access to values (e.g. it is possible to set dictionary

members with uncommon or reserved names).

All available kernel methods can be found in the reference documentation:

https://help.cloud.fabasoft.com/index.php?topic=doc/Reference-Documentation/interfaces-

overview.htm

https://help.cloud.fabasoft.com/index.php?topic=doc/Reference-Documentation/interfaces-overview.htm
https://help.cloud.fabasoft.com/index.php?topic=doc/Reference-Documentation/interfaces-overview.htm

 Fabasoft app.ducx Expressions 10

1.4.1 Boolean

The boolean data type is used to represent logical values. Values of this type can be true or

false.

Examples

boolean b1 = true;

boolean b2 = false;

boolean b3 = b1 || b2;

boolean b1 = null;

1.4.2 Integer

The integer data type represents 64 bit numbers without decimal points.

Example

integer i = 1;

integer i = null;

Useful explicit type conversions include the conversion from string, float, and datetime:

Example

integer i = integer("3"); // explicit conversion from string: string must be a

valid floating point number

integer i = 3.6; // explicit conversion from float: fractional digits are lost

during conversion

1.4.3 Float

The float data type is used to represent single-precision floating-point numbers with 9 digits of

precision.

Example

float f = 3.14;

float f = null;

It implicitly supports the conversion from integer and the explicit conversion from string.

Example

float f = 1;

float f = float("3.14"); // explicit conversion from string: string must be a

valid floating point number

1.4.4 String

The string data type represents a sequence of characters and is used to store and manipulate

textual data. Strings can be declared using single quotes (' '), or double quotes (" "). Strings can

contain letters, numbers, symbols, and whitespace characters. They can also include special

characters like newlines and tabs using escape sequences (link to XpGrammar). The implicit

property length makes it possible to get the length of the string.

 Fabasoft app.ducx Expressions 11

Examples

string firstname = "Jane";

string lastname = 'Doe';

string fullname = firstname + " " + lastname;

string fullname = null;

string stringwithnewline = "First line\nSecond line";

It implicitly supports the conversion from integer and content. Explicit conversions include

conversions from float, object, datetime, and boolean.

Examples

string s = string(3.14); // "3.14"

string s = string(coouser); // results in the objaddress of the current user

string s = string(coonow); // current date and time in UTC format

string s = boolean(true); // "true"

1.4.5 Datetime/Date

The datetime data type refers to a built-in object that represents a specific date and time. It

allows you to manipulate dates and times. To represent date only values you can use the

keyword date. The following examples show how to assign different date values.

Examples

datetime now = coonow; // coonow holds the current date and time

datetime dt = 2012-01-02 14:15:22; // hours, minutes, and seconds are optional

datetime dt = 2012-01-02T14:15:22;

datetime dt = 2012-01-02;

datetime d = null;

date d = 2012-01-02;

date d = null;

It supports the explicit conversion from string:

Examples

datetime dt = datetime("2012-01-02T14:15:22"); // string needs to be a valid date

literal

date d = date("2012-01-02");

The datetime data type exposes implicit properties that can be used to access and manipulate

the individual date and time components. These implicit properties are listed in the following

table. All of these implicit properties are of data type integer.

Property Description

year The year property can be used for getting and setting the year.

month The month property can be used for getting and setting the month.

day The day property can be used for getting and setting the day.

hour The hour property can be used for getting and setting the hour.

minute The minute property can be used for getting and setting the minutes.

 Fabasoft app.ducx Expressions 12

second The second property can be used for getting and setting the seconds.

dayinweek The dayinweek property can be used for getting the day of the week, with

the value 0 representing Sunday and 6 representing Saturday.

dayinyear The dayinyear property can be used for getting the day of the year, with

the possible values ranging from 1 to 366 (for a leap year).

weekinyear The weekinyear property can be used for getting the week of the year,

with the possible values ranging from 1 to 52.

local The local property returns the date and time value converted to local

time.

universal The universal property returns the date and time value converted to

universal time.

Examples

// modify the date

dt.year = 2013;

dt.month = 2;

dt.day = 3;

// modify the time

dt.hour = 14;

dt.minute =15;

dt.second = 22;

// before two hours

datetime before2hours = coonow;

before2hours.hour -= 2;

datetime calcdate = 2024-03-03T00:00:00;

// Set time zone bias to -60 minutes, i.e. CET (Central European Time)

coort.SetThreadTimeZoneBias(-60);

// Get universal time value from calcdate (2024-03-02T00:00:00)

// utcdate will be 2024-03-01T23:00:00

datetime utcdate = calcdate.universal;

// A datetime value is not related to a time zone.

// So, when converting utcdate to the universal time once more

// utcdate will become 2024-03-01T22:00:00

utcdate = utcdate.universal;

// This is also the case when converting calcdate (2024-03-02T00:00:00)

// to local time. localdate will be 2024-03-02T01:00:00

datetime localdate = calcdate.local;

It is also possible to use some arithmetic and comparison operations with date values, as

shown in the following examples.

Examples

datetime before2hours = coonow;

before2hours.hour -= 2;

coonow > before2hours; // dates can be compared

// caluclating time differences

datetime d1 = 2010-01-01 00:00:00;

datetime d2 = 2011-01-01 00:00:00;

integer diff = d2 – d1; // 1 year = 60*60*24*365 = 31536000 seconds

coonow % 86400; // set time to 00:00:00

 Fabasoft app.ducx Expressions 13

// calculate the number of seconds since the last passed minute, hour, or day

d / 60; // equal to d.second

d / 60*60; // equal to d.second + d.minute*60

d / 60*60*24; // equal to d.second + d.minute*60 + d.hour*60*60

1.4.6 Currency

The currency data type is used to represent monetary values and allows to handle financial

calculations related to currencies. It is composed of a currency value and a currency symbol.

The currency value represents a specific amount of money. It can be a decimal or floating-point

with an arbitrary number of digits. The currency symbol represents the specific currency unit.

Note: Converting a currency value to an integer or float can result in information loss since

currency values can potentially have an arbitrary number of digits. To mitigate these issues, it is

crucial to consider the range and precision of the target data type.

Examples

currency c1 = { currsymbol: EUR, currvalue: 3 };

currency c2 = { EUR, 3 };

currency c2 = null;

It supports implicit conversion from integer and float and it is also possible to apply basic

arithmetic operations to currencies. Even with different currency symbols., as shown in

following examples.

Examples

c1 + 3; // 6 EUR

c1 + c2; // 6 EUR

c1 + currency({ currsymbol: USD, currvalue: 3 }); // 6 EUR – the resulting

currency has the currency symbol of the left operand

1.4.7 Content

The content data type represents arbitrary data, such as text or binary files.

It may not to be confused with the struct COOSYSTEM@1.1:Content. The struct Content holds a

property of type content along with additional metadata such as the file extension.

Examples

content mycont = "Hello world!"; // Implicit conversion

integer mycontsize = mycont.size; // 15 - 3 from the BOM and 12 from "Hello

world!"

content mycontfromhex = { base16: "4142" };

%%ASSERT(mycontfromhex.content == "AB");

content cont = coort.CreateContent();

cont.SetFile("/tmp/log.txt"); // read the content from a file

string log = cont.GetContent(cootx, COOGC_MULTIBYTEFILE, COOGC_UTF8); // decode

the content

log += " Some more text";

cont.SetContent(cootx, COOGC_MULTIBYTEFILE, COOGC_UTF8, log); // encode the

string

string filename = cont.GetFile(, true); // create a file with the new content

cont = null;

 Fabasoft app.ducx Expressions 14

Note: When converting a string to a content as in the example above, be aware that this

conversion also includes an UTF-8-byte order mark (BOM). Therefore, the value mycontsize is

15 (3 from the BOM and 12 from "Hello world!").

1.4.8 Dictionary

The dictionary data type represents key-value maps to store and retrieve values based on

unique string keys. It provides an efficient way to perform lookups, insertions, and deletions.

Dictionaries associate each key with a corresponding value. Keys are unique within the

dictionary. Values can be of any data type, such as integers, strings, objects, or even other

dictionaries. Moreover, values can be lists.

Dictionaries can be created in the following way:

Examples

dictionary mydictionary = {}; // create an empty dictionary

dictionary mydictionary = coort.CreateDictionary(); // create an empty dictionary

dictionary mydictionary = { key1: 1, key2: "2", key3: [1, 2] }; // create a pre-

initialized dictionary

To store a value in a dictionary, you provide a key-value pair and the dictionary associates the

key with the corresponding value. If the key already exists in the map, the previous value

associated with that key is overwritten. If the key is new, a new entry is created in the

dictionary.

Examples

mydictionary.key1 = 2; // set value of key1

mydictionary.SetEntry("key1", 2); // set the value of key1 using a kernel method

mydictionary.key3 += 3; // add an element to the list under key3

mydictionary = null;

To retrieve a value from the map, you specify the key, and the map returns the corresponding

value associated with that key. If the key is not found in the dictionary, a null value is returned.

Examples

integer i = mydictionary.key1; // get value of key1

integer i = mydictionary.GetEntry("key1"); // get value of key1 using kernel

method

integer[] integerlist = mydictionary.key3;

1.4.9 Object

The object data type represents objects in general. It is valid for instances of all object classes.

It allows to access the most basic properties of objects, such as the name and address. These

implicit properties are listed in the following table.

Property Description

address The address property can be used to get the unique key of the object.

identification The identification property can be used to get the key of an object at

a given time.

 Fabasoft app.ducx Expressions 15

name The name property can be used to get the name of the object without

transaction context.

reference The reference property can be used to get the reference of an object.

This property is only defined for objects of classes derived from

ComponentObject.

Examples

object myobject = coouser; // assign an existing object

object myobject = #User.ObjectCreate()[2]; // create an object

string objectAddress = mobject.address;

myobject = null;

It supports the explicit conversion from string:

Examples

object myobject = "COO.1.1.1.402"; // string must be a valid object address

object myobject = "COOSYSTEM@1.1:Object";// string must be a valid reference

1.4.10 Any

The any data type is a special type that represents a value of any type. When a variable is

declared of type any, it allows that variable to hold any value, regardless of its type.

However, it's important to note that once a variable is assigned a specific type, it remains fixed

and cannot be changed during runtime. This immutability can lead to type conversion errors if

the variable is later used in operations or contexts that expect a different type.

Examples

any myinteger = 1;

myinteger = "2"; // Ok: conversion to integer(2)

myinteger = "a"; // Nok: runtime error: Could not convert 'a' to

'COOSYSTEM@1.1:INTEGER'

myinteger = null;

1.5 Variables

For all variables within an expression a type should be defined explicitly.

Syntax

// Declaring a variable

Type variable;

// Declaring and initializing a variable

Type variable = initialvalue;

Valid types are object classes and objects of the class COOSYSTEM@1.1:TypeDefinition, which

includes base types as well as compound types and enumerations.

Additionally, attribute definitions (objects of type COOSYSTEM@1.1:AttributeDefinition) can

be used as types for variables.

 Fabasoft app.ducx Expressions 16

Shortcuts are provided for basic data types as defined by the object model language as well as

kernel interfaces as listed below.

Type Description

runtime The type for a runtime interface, such as the predefined symbol coort.

transaction The type for a transaction interface, such as the predefined symbol cootx.

An interface of this type is returned, if you create a new transaction using

coort.CreateTransaction().

method The type for a method interface, such as the predefined symbol coometh.

An interface of this type is returned, if you obtain the implementation of a

use case using cooobj.GetMethod().

searchresult The type for an interface for the result of an asynchronous search, as

returned by coort.SearchObjectsAsync().

expression The type for a Fabasoft app.ducx Expression interface, as returned by

coort.Parse().

aggregate The type for an aggregate interface, which can be used as a generic

substitute for any compound type.

interface A generic type for an interface.

Example

integer @bulksize = 150;

string @query = "SELECT objname FROM APPDUCXSAMPLE@200.200:Order";

searchresult @sr = coort.SearchObjectsAsync(cootx, @query);

Order[] @results = null;

while ((@results = @sr.GetObjects(@bulksize)) != null) {

 %%TRACE("Fetched chunk of search results", @results);

 @results.ProcessOrder();

}

1.5.1 Redeclaration of Variables

Sometimes the types of variables are not known or not specific enough to write expressions

without warnings. This can be fixed using the keyword assume. assume tells the app.ducx

compiler the correct type.

Example

usecase OnUserAndGroup(any memberof) {

 variant User, Group {

 expression {

 if (cooobj.HasAttribute(cootx, #usersurname)) {

 assume User cooobj;

 assume Group[] memberof;

 }

 }

 Fabasoft app.ducx Expressions 17

 }

}

private class SimpleObject: COODESK@1.1:Folder {

 AdministrationObject[] server {

 filter = expression as attrfilterbooleanexpr {

 if (HasClass(#Group)) {

 assume Group this;

 return this.grshortname != null;

 }

 }

 }

}

1.5.2 Declaration of Available Variables

Some scopes can contain variables which are not documented. Should this be the case and the

developer wants to access these variables, the keyword assume can be used, too. In this case

the assume statement is written like a parameter declaration, specifying input/output modifier.

Example

usecase SetReturnURL() {

 variant User {

 application {

 expression {

 assume in string sys_branchvalue;

 assume out ::ru;

 ...

 }

 }

 }

}

1.5.3 Declaration of Dictionary Members

The keyword assume can also be used to declare the types of dictionary entries, especially the

cardinality.

Example

usecase UpdateUser(dictionary datainput) {

 variant User {

 expression {

 assume string datainput.name;

 cooobj.objname = name;

 assume integer[] datainput.weights;

 }

 }

}

1.6 Operators

app.ducx expression language supports a wide range of operators.

1.6.1 Assignment Operators

Assignment operators allow you to set property and variable values. The following table

contains a list of supported assignment operators.

 Fabasoft app.ducx Expressions 18

Operator Description

= The = operator is used for simple assignments. The value of the right operand is

assigned to the left operand.

+= Both operands are added, and the result is assigned to the left operand. The +=

operator can be used with strings, numeric data types, currencies and lists.

-= The right operand is subtracted from the left operand, and the result is assigned

to the left operand. The -= operator can be used with numeric data types,

currencies, lists and dictionaries.

*= Both operands are multiplied, and the result is assigned to the left operand. The

*= operator can be used with numeric data types, currencies, lists and dictionaries.

/= The left operand is divided by the right operand, and the result is assigned to the

left operand. The /= operator can be used with numeric data types, currencies,

lists and dictionaries.

%= A modulus operation is carried out, and the result is assigned to the left operand.

The %= operator can only be used with numeric data types, currencies, lists and

dictionaries.

<<= <<= is used for character- and bitwise shifting to the left. The <<= operator can be

used with strings, integers, currencies and lists.

>>= >>= is used for character- and bitwise shifting to the right. The >>= operator can be

used with strings, integers, currencies and lists.

??= If the left operand is null, the right operand is evaluated and assigned to the left

operand.

Example

Order @order;

Customer @customer;

// A simple assignment operation

@order.orderdate = coonow;

// Adding an element to a list

@customer.customerorders += @order;

// Adding an element to a list only if it is not part of the list already

@customer.customerorders *= @order;

1.6.2 Logical Operators

Logical operators support short circuit evaluation semantics. The right operand is only

evaluated if the result of the evaluation is not determined by the left operand already. The

following table shows a list of the supported logical operators.

Operator Description

 Fabasoft app.ducx Expressions 19

and (alternatively &&) The and operator indicates whether both operands are true. If both

operands have values of true, the result has the value true. Otherwise,

the result has the value false. Both operands are implicitly converted

to BOOLEAN and the result data type is BOOLEAN.

or (alternatively ||) The or operator indicates whether either operand is true. If either

operand has a value of true, the result has the value true. Otherwise,

the result has the value false. Both operands are implicitly converted

to BOOLEAN and the result data type is BOOLEAN.

not (alternatively !) The expression yields the value true if the operand evaluates to false,

and yields the value false if the operand evaluates to true. The

operand is implicitly converted to BOOLEAN, and the data type of the

result is BOOLEAN.

?? The expression yields the value of the left operand if not null, otherwise

the value of the right operand.

Example

if (@orderstate == OrderState(OS_SHIPPED) and @orderdate != null or

 @orderstate == OrderState(OS_COMPLETED) and @invoice == null) {

 throw #InvalidProcessingState;

}

1.6.3 Calculation Operators

The following table contains a list of supported calculation operators.

Operator Description

+ - * / % The +, -, *, / and % operators are supported for numeric data types and

lists. +, -, * and / are also supported for currencies (* and / need

one integer or float operand). Additionally, the + operator can be used

to concatenate strings.

When used with lists, the following semantic applies:

+ (concatenation): The right operand is concatenated to the end of the

left operand.

- (difference): Each element from the right operand is removed from

the left operand.

* (union): Each element from the right operand is appended to the left

operand if the element does not occur in the left operand.

/ (symmetric difference): The resulting list is the union of the difference

of the left and the right operand and the difference of the right and the

left operand: a / b == (a - b) * (b - a) == (a * b) - (b % a).

 Fabasoft app.ducx Expressions 20

% (intersection): The resulting list is the list of elements that exist in both

the left and the right operand.

Note: Each element in a list is treated as an individual element, even if

the list contains other elements with the same value. So be careful if

you use operators with lists that are not unique.

Since there are two elements "2" in the left operand, these expressions

are true:

[1, 2, 2] - [2] == [1, 2];

[1, 2, 2] * [2] == [1, 2, 2];

When used with dictionaries, the following semantic applies:

- (difference): Each entry from the right operand is removed from the

left operand (regardless of the value of the entry)

* (union): Each entry from the right operand is appended to the left

operand if the entry does not occur in the left operand.

/ (symmetric difference): The resulting dictionary is the union of the

difference of the left and the right operand and the difference of the

right and the left operand: a / b == (a - b) * (b - a) == (a * b)

- (b % a).

% (intersection): The resulting dictionary contains the entries that exist

in both the left and the right operand. The values are taken from the

left operand.

++ The ++ increment operator is a unary operator that adds 1 to the value

of a scalar numeric operand. The operand receives the result of the

increment operation. You can put the ++ before or after the operand. If

it appears before the operand, the operand is incremented. The

incremented value is then used in the expression. If you put the ++ after

the operand, the value of the operand is used in the expression before

the operand is incremented.

-- The -- decrement operator is a unary operator that subtracts 1 from

the value of a scalar numeric operand. The operand receives the result

of the decrement operation. You can put the -- before or after the

operand. If it appears before the operand, the operand is decremented.

The decremented value is then used in the expression. If you put the --

after the operand, the value of the operand is used in the expression

before the operand is decremented.

<< The << is used for character- and bitwise shifting to the left. The <<

operator can be used with strings, integers, currencies and lists. When

used with strings, the right operand specifies the number of characters

removed from the beginning of the string. When used with lists, the

right operand specifies the number of elements to be removed from

the top of the list.

>> The >> is used for character- and bitwise shifting to the right. The >>

operator can be used with strings, integers, currencies and lists. When

 Fabasoft app.ducx Expressions 21

used with strings, the right operand specifies the number of spaces

inserted on the left side of the string. When used with lists, the right

operand specifies the number of elements to be removed from the end

of the list.

Example

@aaa = ["John", "James", "Jim", "Jamie"];

@bbb = ["Jamie", "Jim"];

// Check if every element of list @bbb is included in list @aaa.

// You have to sort the both operands of the compare

// since for % the order is taken from the first operand @aaa:

sort(@aaa % @bbb) == sort(@bbb);

// So it is more efficient to use the difference:

@bbb - @aaa == [];

// Check if the last change of an object was carried out on the same date it was

// created. Using the "%86400" operation, the time portion of the datetime

// property "COOSYSTEM@1.1:objchangedat" is set to "00:00:00" in order to

compare

// the date portion only using the "==" operator.

objcreatedat % 86400 == objchangedat % 86400

Note: If two different currencies are added or subtracted an implicit conversion is carried out.

Following evaluation order is defined: The conversion table of the transaction variable

TV_CURRCONVTAB is used. If TV_CURRCONVTAB is not available, the conversion table of the left

operand is used. If not available, the conversion table of the right operand is used. Otherwise,

an error is generated.

Examples for List Operators

The +, -, *, / and % operators (concatenation, difference, union, symmetric difference,

intersection) are supported for lists. The following example shows how list operators work.

Example

[]+[1] == [1];

[1, 2, 3] + [2, 3, 4] == [1, 2, 3, 2, 3, 4];

[1, 2, 3] + [] == [1, 2, 3];

[1, 2, 3] - [2, 3, 4] == [1];

[1, 2, 3] - [1, 2, 3] == [];

[1, 2, 2, 3] - [1, 2, 3] == [2];

[1, 2, 3] - [3, 2, 1] == [];

[1, 2, 3] - [4, 5, 6] == [1, 2, 3];

[1, 2, 2] - [2, 3, 4] == [1, 2]

[] - [1] == [];

[1, 2, 3] * [2, 3, 4] == [1, 2, 3, 4];

[1, 2, 2] * [1, 2, 2, 3, 3, 3, 4] == [1, 2, 2, 3, 3, 3, 4];

[] * [1, 2, 2] == [1, 2, 2];

[1, 2, 3] * [] == [1, 2, 3];

[1, 2, 3] * [3, 2, 1] == [1, 2, 3];

[1, 2, 2] * [2, 3, 4] == [1, 2, 2, 3, 4];

[1, 2, 3] / [4, 5, 6] == [1, 2, 3, 4, 5, 6];

[1, 2, 3] / [2, 3, 4] == [1, 4];

[1, 2, 3] / [1, 2, 3] == [];

[1, 2, 3] / [3, 2, 1] == [];

[1, 2, 2] / [2, 3, 4] == [1, 2, 3, 4]

[1, 2, 3, 4] % [2, 3, 4] == [2, 3, 4];

[1, 2, 3] % [2, 3, 4] == [2, 3];

 Fabasoft app.ducx Expressions 22

[1, 2, 3] % [4, 5, 6] == [];

[1, 2, 3] % [3, 2, 1] == [1, 2, 3];

[] % [4, 5, 6] == [];

Examples for Dictionary Operators

The -, *, / and % operators (difference, union, symmetric difference, intersection) are supported

for dictionaries. These operators work on an element level, the value of a dictionary entry is not

relevant. The left operand dominates. The following example shows how dictionary operators

work.

Example

({}) - ({}) == ({});

({}) - ({ a: 1, b: "x", c: true }) == ({});

({ a: 1, b: "x", c: true }) - ({}) == ({ a: 1, b: "x", c: true });

({ a: 1, b: "x", c: true }) - ({ a: 1, b: "x", c: true }) == ({});

({ a: 1, b: "x", c: true }) - ({ b: 2, c: "x", d: true }) == ({ a: 1 });

({ a: 1, b: "x", c: true }) - ({ a: 2, b: "x", c: 1 }) == ({});

({ a: 2, b: "x", c: 1 }) - ({ a: "x" }) == ({ b: "x", c: 1 });

({}) * ({}) == ({});

({}) * ({ a: 1, b: "x", c: true }) == ({ a: 1, b: "x", c: true });

({ a: 1, b: "x", c: true }) * ({}) == ({ a: 1, b: "x", c: true });

({ a: 1, b: "x", c: true }) * ({ a: 1, b: "x", c: true }) == ({ a: 1, b: "x", c:

true });

({ a: 1, b: "x", c: true }) * ({ b: 2, c: "x", d: true }) ==

 ({ a: 1, b: "x", c: true, d:

true });

({ a: 1, b: "x", c: true }) * ({ a: 2, b: "x", c: 1 }) == ({ a: 1, b: "x", c:

true });

({ a: 2, b: "x", c: 1 }) * ({ a: "x" }) == ({ a: 2, b: "x", c: 1 });

({}) / ({}) == ({});

({}) / ({ a: 1, b: "x", c: true }) == ({ a: 1, b: "x", c: true });

({ a: 1, b: "x", c: true }) / ({}) == ({ a: 1, b: "x", c: true });

({ a: 1, b: "x", c: true }) / ({ a: 1, b: "x", c: true }) == ({});

({ a: 1, b: "x", c: true }) / ({ b: 2, c: "x", d: true }) == ({ a: 1, d: true

});

({ a: 1, b: "x", c: true }) / ({ a: 2, b: "x", c: 1 }) == ({});

({ a: 2, b: "x", c: 1 }) / ({ a: "x" }) == ({ b: "x", c: 1 });

({}) % ({}) == ({});

({}) % ({ a: 1, b: "x", c: true }) == ({});

({ a: 1, b: "x", c: true }) % ({}) == ({});

({ a: 1, b: "x", c: true }) % ({ a: 1, b: "x", c: true }) == ({ a: 1, b: "x", c:

true });

({ a: 1, b: "x", c: true }) % ({ b: 2, c: "x", d: true }) == ({ b: "x", c: true

});

({ a: 1, b: "x", c: true }) % ({ a: 2, b: "x", c: 1 }) == ({ a: 1, b: "x", c:

true });

({ a: 2, b: "x", c: 1 }) % ({ a: "x" }) == ({ a: 2 });

1.6.4 Comparison Operators

Comparison operators allow you to compare two operands. The following table provides a

summary of the supported comparison operators. The data type of the result is always

BOOLEAN.

Operator Description

== The equality operator compares two operands and indicates whether

the value of the left operand is equal to the value of the right operand.

 Fabasoft app.ducx Expressions 23

The equality operator has a lower precedence than the relational

operators (<, <=, >, >=).

!= (alternatively, <>) The inequality operator compares two operands and indicates whether

the value of the left operand is not equal to the value of the right

operand. The inequality operator has a lower precedence than the

relational operators (<, <=, >, >=).

<

The relational operator < compares two operands and indicates

whether the value of the left operand is less than the value of the right

operand.

<= The relational operator <= compares two operands and indicates

whether the value of the left operand is less than or equal to the value

of the right operand.

> The relational operator > compares two operands and indicates

whether the value of the left operand is greater than the value of the

right operand.

>= The relational operator >= compares two operands and indicates

whether the value of the left operand is greater than or equal to the

value of the right operand.

<=> The relational operator <=> compares two operands. It returns -1 if the

left value is lower and +1 if the left value is greater than the right value.

If the values are equal, the result is 0.

contains The contains operator determines whether left operand contains the

right operand. This operator can be used with string operands. It may

be preceded by the not keyword.

like The like operator determines whether the left string matches the right

string. The % and _ wildcards can be used in the right string operand and

cannot be escaped. The like operator can be preceded by the sounds

keyword for a phonetic comparison. Furthermore, it can also be

preceded by the not keyword.

in The in operator determines whether the value of the left operand is an

element of the list provided in the right operand. The in operator can

also be used with a list in the left operand. It may be preceded by the

not keyword.

When using lists in both operands, the semantic is:

 [a1, a2, ... an] in [b1, b2, ... bm]

->

 (a1 == b1 or a1 == b2 or ... or a1 == bm) or

 (a2 == b1 or a2 == b2 or ... or a2 == bm) or

 .

 .

 Fabasoft app.ducx Expressions 24

 .

 (an == b1 or an == b2 or ... or an == bm)

This means, that the expression is true, if any element from the left

operand is in the list of the right operand.

Note:

• Version 2021 and later releases

When the left operand is null (i.e. an empty list) the evaluation of

the in operator is false.

• Version 2020 and prior releases

When the left operand is null (i.e. an empty list) the evaluation of

the in operator is true.

This behavior was changed as it led to typical errors in cases like

this:
if (obj in objlist) {

 obj.GetName(cootx);

}

includes The includes operator determines whether the value of the right

operand is an element of the list provided in the left operand. It may be

preceded by the not keyword.

When using lists in both operands, the semantic is:

 [a1, a2, ... an] includes [b1, b2, ... bm]

->

 (a1 == b1 or a1 == b2 or ... or a1 == bm) and

 (a2 == b1 or a2 == b2 or ... or a2 == bm) and

 .

 .

 .

 (an == b1 or an == b2 or ... or an == bm)

This means, that the expression is true, if all elements from the right

operand are in the list of the left operand.

Note:

• Version 2021 and later releases

When the right operand is null (i.e. an empty list) the evaluation of

the includes operator is false.

• Version 2020 and prior releases

When the right operand is null (i.e. an empty list) the evaluation of

the includes operator is true.

This behavior was changed as it led to typical errors in cases like

this:
if (objlist includes obj) {

 obj.GetName(cootx);

}

 Fabasoft app.ducx Expressions 25

between and The between and operator determines whether the value of the first

operand is in the range between the values of the operands provided

after the keywords between and and.

If the first operand is a list, then all values of the list must be between

the second and the third operand.

is null The is null operator returns true if the value of the left operand is

undefined.

Example

if (@points < 100) {

 @memberstatus = "MS_SILVER";

}

else if (@points between 100 and 1000) {

 @memberstatus = "MS_GOLD";

}

else {

 @memberstatus = "MS_PLATINUM";

}

// If @memberstatus is null this evaluates to true

if (@memberstatus in ["MS_GOLD", "MS_PLATINUM"]) {

 @expressshipping = true;

}

if (@nickname like "Bob%" or @nickname in ["Dick", "Rob"]) {

 @firstname = "Robert";

}

Note:

• When comparing aggregates or dictionaries, the values of all attributes or entries are

compared. The comparison is recursive for nested values.

• Aggregate types can specify a comparator method in COOSYSTEM@1.1:typecompare. When

comparing such aggregates this method is used to calculate the result of the comparison.

Standard comparison of aggregates only allows a check for equality of values (operators ==,

!= , in, and includes). Using COOSYSTEM@1.1:typecompare allows implementation of

greater or less operators for aggregates. If no COOSYSTEM@1.1:typecompare is specified, the

default comparison for aggregates uses the properties in COOSYSTEM@1.1:typesort first,

then the properties in COOSYSTEM@1.1:typecompattrs.

• Objects are compared in an internal order.

• Dictionaries only allow a check for equality of values (operators ==, != , in, and includes).

• Contents and COM interfaces cannot be compared by their value, when comparing using

the operators ==, != , in, and includes, the internal identity of these objects is used.

• String operands are compared using the setting COOSYSTEM@1.1:domaincisqry in your

current domain object. The default for this setting is true, meaning that comparison is case

insensitive by default. This is also relevant for min/max/sort/unique/find and the list

operators -, *, /, and %.

 Fabasoft app.ducx Expressions 26

1.6.5 Conditional Operator

The conditional operator ?: has three operands. It tests the result of the first operand, and

then evaluates one of the other two operands based on the result of the evaluation of the first

operand. If the evaluation of the first operand yields true, the second operand is evaluated.

Otherwise, the third operand is evaluated.

Example

@orders = (@customer != null) ?

 @customer.customerorders[objname] :

 null;

1.6.6 Selection Operator

The selection operator [] can be used for the following purposes:

• as a list constructor to define a list of values,

• to select elements from a list of values

• to filter elements of a list,

• to specify a parameter as the return value when invoking a use case, and

• for calculated identifiers (see chapter 1.10 “Calculated Identifiers”).

Note:

• Version 2021 February Release and later releases

When using the selection operator to filter elements of a list, the following optimization is

implemented: if the result of the expression is used in a Boolean context or checked for

null, processing stops, once the Boolean result is available.
if (folder.objchildren[IsUsable()]) {

 // list processing stopped after the first matching object

}

boolean visisble = folder.objchildren[IsUsable()] != null;

• Version 2020 and prior releases

When using the selection operator to filter elements of a list, all elements are processed.

Example

// Constructing an empty list

@productcategories = [];

// Constructing a list of string values

@productcategories = ["Fish", "Meat", "Poultry"];

// Selecting elements from a list

// The result is a single element

@fish = @productcategories[0];

@meat = @productcategories[1];

// Selecting multiple elements from a list

// The result is a list again

@nofish = @productcategories[1,2];

// Selecting elements starting from the end of the list by specifying negative

indices

@poultry = @productcategories[-1];

// Example for filtering a list: This expression returns the orders that

// do not have a valid order date.

// The result is again a list if more than one item is selected

@customer.customerorders[orderdate is null];

 Fabasoft app.ducx Expressions 27

// Selecting a sub list

// The result is a list again

@nofish = @productcategories[1:2];

// Selecting a sub list with negative elements

// The result is a list again

@nofish = @productcategories[-2:-1];

// Specifying a parameter as the return value when invoking a use case

@neworder = #Order.ObjectCreate()[2];

// Results in the method object of the call

@meth = #Order.ObjectCreate()[...];

// Results in all entries of the customization point CPSymbols

@list = coouser.CPSymbols()[...];

1.6.7 $ Operator

The $ operator can be used in following cases.

1.6.7.1 Identifier

By default, the kernel tries to interpret identifiers as references when evaluating expressions. In

order to use an identifier that could also be a reference as name, it must be prefixed with $.

Note: The Fabasoft app.ducx compiler will attempt to automatically insert the symbol $ when

serializing the expression, if it can determine the context in which the identifier is used. If it

can’t calculate a definitive type, you will receive a warning.

For the following example, assume that the local scope contains a dictionary. objname can only

be used as a variable when prefixed with $.

Example

// Assuming the local scope contains a dictionary:

$objname = "Hello world";

// When omitting the "$", the expression is interpreted as follows:

this.COOSYSTEM@1.1:objname = "Hello world";

1.6.7.2 String Interpolation

If strings are prefixed with $, they can contain arguments with the syntax {~ argument ~}. All

arguments in the string are evaluated, converted to string type and embedded in the string

instead of the pattern.

Example

// '--Administrator, System--'

string username = $"--{~ coouser.GetName() ~}--";

// '3'

string displaycount = $"{~ count([0,1,2]) ~}";

1.6.8 # Operator

If you need to retrieve a component object in an expression, you must prefix its reference with

#. In order to use an identifier that could also be a variable as reference, it must be prefixed

with #.

 Fabasoft app.ducx Expressions 28

Note: The Fabasoft app.ducx compiler will attempt to automatically fully qualify an identifier to

a reference when serializing the expression, if it can determine the context in which the

identifier is used. If it can’t calculate a definitive type, you will receive a warning.

For instance, when referring to a property definition or an object class, you must prefix the

reference with # in order to get the corresponding component object.

Example

// Accessing property definition COOSYSTEM@1.1:objname

@objnameprop = #objname;

@ordername = @order.GetAttributeValue(cootx, @objnameprop);

// Accessing object class APPDUCXSAMPLE@200.200:Order

@orderclass = #APPDUCXSAMPLE@200.200:Order;

@neworder = @orderclass.ObjectCreate();

// Accessing property of undeclared object

@neworder.#objname = "New Name";

1.7 Predefined Variables and Functions

The app.ducx expression language comes with a set of predefined variables and functions to

make programming as convenient as possible.

1.7.1 Predefined Variables

The following table shows the list of predefined variables that are provided automatically by the

kernel when an expression is evaluated.

Variable Description

coort The coort variable can be used to access the runtime.

cootx The current transaction context is accessible by the cootx variable.

cooobj The cooobj variable holds the current object on which the evaluation of the

expression is invoked.

coometh For use case implementations in app.ducx expression language, the

coometh variable holds the so-called method context.

coouser The coouser variable holds the user object of the current user.

coogroup The coogroup variable holds the group object of the role of the current

user.

cooposition The cooposition variable holds the position object of the role of the

current user.

cooenv The cooenv variable holds the user environment of the current user.

cooroot The cooroot variable holds the desk of the current user.

coolang The coolang variable holds the language of the current user.

 Fabasoft app.ducx Expressions 29

coodomain The coodomain variable holds the current domain.

coonow The coonow variable holds the current date and time.

Example

// Using the runtime

User @user = coort.GetCurrentUser(); // or coouser

object @desk = coort.GetCurrentUserRoot();// or cooroot

datetime @currentdate = coonow;

// Accessing transaction variables using the generic interface

cootx.SetVariableValue(#APPDUCXSAMPLE@200.200, 1, #BOOLEAN, 0, true);

boolean @txvarval = cootx.GetVariableValue(#APPDUCXSAMPLE@200.200, 1);

// Using the current object

string @name = cooobj.GetName(cootx);

ObjectClass @objcls = cooobj.GetClass();

Object[] @orders = cooobj.APPDUCXSAMPLE@200.200:customerorders;

// Using the method context to call the super method

cooobj.CallMethod(cootx, coometh);

1.7.2 Popular Kernel Methods

The following table contains a list of implicit pseudo functions supported by app.ducx

expression language. These functions can be invoked on an object.

Function Description

IsClass(class) IsClass determines whether the object class it is invoked on is

derived from or identical to class.

HasClass(class) HasClass determines whether the object is an instance of or

derived from class.

GetClass() GetClass returns the object class of the object.

GetName(tx) GetName returns the Name (COOSYSTEM@1.1:objname) of the object.

GetAddress() GetAddress returns the Address (COOSYSTEM@1.1:objaddress) of

the object.

GetReference() GetReference returns the Reference (COOSYSTEM@1.1:reference)

of a component object.

GetIdentification() GetIdentification returns the full identification of the object,

which is a combination of the Address

(COOSYSTEM@1.1:objaddress) and a version timestamp.

Example

 Fabasoft app.ducx Expressions 30

@objectclass = cooobj.GetClass();

@objectname = cooobj.GetName(cootx);

@objectaddress = cooobj.GetAddress();

cooobj.HasClass(#APPDUCXSAMPLE@200.200:Order) ?

 cooobj.APPDUCXSAMPLE@200.200:ProcessOrder() : null;

1.7.3 Working With Contents

The following table lists methods that can be invoked on variables of type CONTENT.

Method Description

GetFile(name,

generatetemp)
GetFile copies the CooContent to a file and returns the file name.

name denotes the name of the file to be created.

SetFile(name,

removeonrelease)
SetFile stores the content of a file in a CooContent. name denotes

the name of the file to be used as a source.

GetContent(tx,

flags, codepage)
GetContent returns a CooContent as a String and can only be used

for retrieving text-based contents.

SetContent(tx,

flags, codepage,

string)

SetContent stores a String in a CooContent.

Example

// Assuming that the global scope contains a dictionary

if (::HasEntry("description")) {

 // Initialize a new content

 content @description = {};

 // Set the string contained in ::description into the content

 // (use 65001 as "codepage" for UTF-8 encoding)

 @description.SetContent(cootx, 1, 65001, ::description);

 // Remove the description string from the global scope dictionary

 ::ClearEntry("description");

}

1.7.4 Working With Dictionaries

The following table lists methods that can be invoked on variables of type DICTIONARY.

Method Description

GetEntry(key) GetEntry returns the list of values stored under key. Use this

method for retrieving lists from a dictionary.

GetEntryValue(key) GetEntryValue returns value stored under key. Use this

method for retrieving scalar values from a dictionary.

GetEntryValueCount(key) GetEntryValueCount returns the number of values of the

entry specified by key.

 Fabasoft app.ducx Expressions 31

GetEntryCount() GetEntryCount returns the number of entries in a dictionary.

GetEntryKey(index) GetEntryKey returns the key of the entry of the specified

index.

SetEntry(key, values) SetEntry creates an entry under key for the specified

values. Use this method for storing lists of values in a

dictionary.

SetEntryValue(key, inx,

value)
SetEntryValue creates an entry under key for the specified

value. Use this method for storing a scalar value in a

dictionary.

TestEntry(key) TestEntry checks whether a dictionary contains an entry

under key. This method returns true if the value stored

under key is null.

HasEntry(key) HasEntry checks whether a dictionary contains an entry

under key. This method returns false if the value stored

under key is null.

ClearEntry(key) ClearEntry removes the entry stored under key from a

dictionary.

Reset() Reset removes all entries from a dictionary.

Backup() Backup serializes the contents of a dictionary to a string.

Restore(string) Restore rebuilds a dictionary from a serialized string.

1.7.5 Getting the Data Type of an Expression

The typeof function allows you to determine the data type of an expression. The result is a

type or property definition object.

Example

// Determining the data type of the local scope

@localtype = typeof(this);

// Determining the data type of the global scope

@globaltype = typeof(::this);

// Determining the data type of a variable

@myvalue = "Hello world!";

@resulttype = typeof(@myvalue);

// Determining the data type of an expression

@resulttype = typeof(cooobj.APPDUCXSAMPLE@200.200:customerorders);

1.7.6 String Functions

The following table contains the list of string utility functions.

 Fabasoft app.ducx Expressions 32

Function Description

upper(string) The upper function converts all characters of a string to upper

case.

lower(string) The lower function converts all characters of a string to lower

case.

indexof(string, pattern) The indexof function returns the character-based index of

pattern within string. If the pattern is not found the function

returns -1

strlen(string) The strlen function returns the length of string.

strtrim(string) The strtrim function trims white space at the beginning and at

the end of string.

strhead(string, index) The strhead function extracts the leftmost index characters

from a string and returns the extracted substring. index is

zero-based. If a negative value is supplied in index, absolute

value of index is subtracted from the length of the string. If the

absolute value of a negative index is larger than the length of

the string, 0 is used for index.

strtail(string, index) The strtail function extracts the characters from a string

starting at the position specified by index and returns the

extracted substring. index is zero-based. If a negative value is

supplied in index, the absolute value of index is subtracted

from the length of the string. If the absolute value of a negative

index is larger than the length of the string, 0 is used for index.

strsplit(string,

separator)
The strsplit function identifies the substrings in string that

are delimited by separator, and returns a list containing the

individual substrings.

strjoin(list [,

separator])
The strjoin function concatenates the list of strings and

inserts separator between the individual elements yielding a

single concatenated string. If separator is not specified or

null then the list elements are concatenated directly.

strreplace(string, from

[, to])
The strreplace function replaces all occurrences of string from

with string to in string. If to is not specified or null then all

occurrences of from are deleted from the string.

Example

@value = strhead("ABC", 1); // yields "A"

@value = strtail("ABC", 1); // yields "BC"

@value = strsplit("ABC", "B"); // yields ["A","C"]

@value = strjoin(["A", "B", "C"], ""); // yields "ABC"

 Fabasoft app.ducx Expressions 33

@value = strjoin(strsplit("A-B-C", "-"), "+"); // yields "A+B+C"

@value = strreplace("ABC", "B", ""); // yields "AC"

@value = strreplace("ABCABC", "B", "X"); // yields "AXCAXC"

@value = strlen("ABC"); // yields 3

In addition to the string functions provided by app.ducx expression language, the actions listed

in the following table are useful for manipulating strings. For further information, refer to the

Fabasoft reference documentation.

Function Description

COOSYSTEM@1.1:Format(value,

pattern, symbols, result)
This action takes a single value (any type) as first parameter

and a formatting pattern as second parameter.

The third parameter is for advanced options (code page,

custom symbols for separators or the decimal point).

The result is returned in the fourth parameter.

Refer to the Fabasoft reference documentation for a

description of the supported formatting patterns.

COOSYSTEM@1.1:Print(string,

...)
Processes a format string or prints the object to a resulting

string.

If the string parameter contains a non-empty format

string, this is used regardless of the object of the action.

If the object is a string object, the property Print

COOSYSTEM@1.1:string is used as format string.

If the object is an error message, the property

COOSYSTEM@1.1:errtext is used as format string.

In all other cases the name of the object is used as format

string.

If the string contains formatting patterns starting with the

"%" character these patterns are replaced by the additional

parameters of the Print action.

Refer to the Fabasoft reference documentation for a

description of the supported formatting patterns.

COOSYSTEM@1.1:PrintEx(string,

arguments)
Uses COOSYSTEM@1.1:Print to print a format string or an

object to a resulting string. Parameters for formatting are

passed in a string list in the parameter arguments.

Each line in the string list in the arguments parameter is

evaluated as an expression.

Example

// Get the modification date of the object as formatted string

string @formattedstr = cooobj.Format(cooobj.objmodifiedat, "dT");

 Fabasoft app.ducx Expressions 34

// Format an integer value with leading zeroes to yield "000123"

integer @intval = 123;

string @intvalstr = cooobj.Format(@intval, "000000");

// Format an integer value using digit grouping to yield "123,456"

integer @intval2 = 123456;

string @intvalstr2 = cooobj.Format(@intval2, "#,###");

// Get the object's name and subject as formatted string

string @titlestr = cooobj.Print("%s (%s)", cooobj.objname, cooobj.objsubject);

// Assuming that StrCustomFormat is a string object containing the format pattern

// "%s iteration %03d", the following expression will write the name of the

current object

// and the current loop iteration number padded with leading zeroes to the tracer

for (integer @idx = 0; @idx < 1000; @idx++) {

 %%TRACE(#StrCustomFormat.Print(null, cooobj.objname, @idx));

}

1.7.7 List Functions

The following table shows the list of functions provided for working with lists.

Function Description

count(list) The count function returns the number of elements in list.

Note: Do not use count(list) > 0 or count(list) == 0 to

check whether a list is full or empty. Use the Boolean type cast

list or !list instead, this is much more efficient.

insert(list, index,

value)
The insert function inserts value into list at position index.

The parameter list is modified by that function; therefore, it

must be assignable. index is zero-based. If a negative value is

supplied in index, absolute value of index is subtracted from

the length of the list. If the absolute value of a negative index is

larger than the length of the list, 0 is used for index. If index is

greater than the number of elements in list, value is

appended at the end of list.

delete(list, index [,

count])
The delete function deletes the value at index from list. The

parameter list is modified by that function; therefore, it must

be assignable. index is zero-based. If a negative value is

supplied in index, absolute value of index is subtracted from

the length of the list. If the absolute value of a negative index is

larger than the length of the list, 0 is used for index. If count is

not specified or null then one element is deleted, otherwise

count specifies the number of elements following index that

should be deleted. If less than count elements are available, the

list is truncated at index. If count is negative, the elements

before index are deleted.

find(list, value) The find function searches list for the element value, and

returns the index of the first occurrence within the entire list. If

value is not found in list, the number of elements in list is

returned.

 Fabasoft app.ducx Expressions 35

sort(list) The sort function sorts the elements in list. Lists of contents,

dictionary or interfaces cannot be sorted. Lists of aggregates

can only be sorted, if the aggregate type defines a compare

action in COOSYSTEM@1.1:typecompare. Lists of objects are

sorted by a defined internal order. This makes sort useful in

combination with the unique function, since

sort(unique(objlist)) is much faster than unique(objlist).

When sorting aggregates, all properties of

COOSYSTEM@1.1:typesortattrs are used for comparing in the

listed order. If the aggregate contains additional properties in

COOSYSTEM@1.1:typecompattrs, these properties are used as

well. If the aggregate has no COOSYSTEM@1.1:typesortattrs,

only the properties of COOSYSTEM@1.1:typecompattrs are used.

Elements of type COOSYSTEM@1.1:CONTENT or

COOSYSTEM@1.1:COMINTERFACE cannot be sorted or compared.

unique(list) The unique function makes the elements in list unique.

revert(list) The revert function reverts the elements in list.

Example

insert(@orders, count(@orders), @neworder);

delete(@orders, find(@orders, @canceledorder));

unique(sort(@orders));

1.7.8 Mathematical Functions

The following table shows the list of mathematical functions supported by app.ducx expression

language.

Function Description

sum(list) The sum function returns the sum of all values in list. Values

can also be passed to sum as individual arguments. The sum

function can only be used with numeric data types.

avg(list) The avg function returns the average of all values in list. Values

can also be passed to avg as individual arguments. The avg

function can only be used with numeric data types.

min(list) The min function returns the smallest value in list. Values can

also be passed to min as individual arguments. The min function

can be used with strings and numeric data types.

max(list) The max function returns the largest value in list. Values can

also be passed to max as individual arguments. The max function

can be used with strings and numeric data types.

 Fabasoft app.ducx Expressions 36

Example

@avgorderamount = avg(@customer.APPDUCXSAMPLE@200.200:customerorders.

 APPDUCXSAMPLE@200.200:ordertotal.currvalue);

Additional mathematical functions are provided by the #Math object. For further information,

see https://help.cloud.fabasoft.com/index.php?topic=doc/Reference-Documentation/class-

fscexpext-MathFunctions.htm.

1.7.9 Escape Sequences for Special Characters

The following table contains a list of supported escape sequences for special characters.

Character ASCII

representation

ASCII value Escape sequence

New line NL (LF) 10 or 0x0a \n

Horizontal tab HT 9 \t

Vertical tab VT 11 or 0x0b \v

Backspace BS 8 \b

Carriage return CR 13 or 0x0D \r

Form feed FF 12 or 0x0C \f

Alert BEL 7 \a

Backslash \ 92 or 0x5C \\

Question mark ? 63 or 0x3F \?

Single quotation

mark

' 39 or 0x27 \'

Double quotation

mark

" 34 or 0x22 \"

Hexadecimal

number

hh \xhh

Null character NUL 0 \0

Unicode character hhhh \uhhhh

Unicode sequence hh hhhh hhh \u{hh,hhhh,hhh}

Note: Please be aware that strings in expressions are UTF-8. If you use hexadecimal escape

sequences be sure that the resulting byte sequence is a valid UTF-8 character.

https://help.cloud.fabasoft.com/index.php?topic=doc/Reference-Documentation/class-fscexpext-MathFunctions.htm
https://help.cloud.fabasoft.com/index.php?topic=doc/Reference-Documentation/class-fscexpext-MathFunctions.htm

 Fabasoft app.ducx Expressions 37

Example

@fullname = "Samuel \"Sam\" Adams";

1.8 Getting and Setting Property Values

Syntax

// Getting property values using the assignment operator

variable = object.property;

// Setting property values using the assignment operator

object.property = expression;

// Setting values of a compound property list using the assignment operator

// The values are assigned based on their position

object.property = [{ val1, val2, ... }, { vala, valb, ... }, ...];

// Simple initialization of compound properties

CompoundType compoundtype = { val1, val2, ... };

CompoundType({ val1, val2, ... });

// Setting values of a compound property list using the assignment operator

// The values are assigned based on their position

object.property = [{ val1, val2, ...}, { vala, valb, ...}, ...];

// Setting values of a compound property list using the assignment operator

// The values are assigned based on the properties of the compound type

object.property = [{ reference1 = val1, reference2 = val2, ... }, ...];

// Setting values of a compound property list using the "JavaScript" notation

// The values are assigned based on the properties of the compound type

// The right sight

object.property = [{ reference1 : val1, reference2 : val2, ... }, ...];

// Getting property values using the Get... functions

variable = object.GetAttributeValue(transaction, property);

variable = object.GetAttribute(transaction, property);

variable = object.GetAttributeString(transaction, property, language);

variable = object.GetAttributeStringEx(transaction, property, language,

 additionallist, displayflags);

// Setting property values using the Set... functions

object.SetAttributeValue(transaction, property, index, value);

object.SetAttribute(transaction, property, value);

Note: You can set the value (currvalue) of a currency property (compound type) by just

assigning a string, float or integer to the currency property (currency @cur = 7.56;). In this

case it is not necessary to specify explicitly the currvalue property (@cur.currvalue = 7.56;).

You can use the assignment operator = to get and set the value of a property. Even though

using the assignment operator is recommended, you may also use the following functions to

get and set property values:

• The GetAttributeValue function is used for retrieving a scalar property value.

• The GetAttribute function is used for retrieving a list.

• The GetAttributeString function is used for retrieving a string representation of the

property value. This function can be used for retrieving multilingual strings in the desired

language.

• The GetAttributeStringEx function is used for retrieving a string representation of the

property value. This function allows you to specify so-called display flags (see the following

table) for the value to be retrieved.

• The SetAttributeValue function is used to store a scalar value in a property.

 Fabasoft app.ducx Expressions 38

• The SetAttribute function is used to store a list.

Value Description

0x0001 Object address

0x0002 Object reference

0x0004 Enumeration reference

0x0010 XML escaped

0x0020 HTML escaped

0x1000 Row list

0x2000 Column list

0x8000 No list indicator

Example

@orders = @customer.APPDUCXSAMPLE@200.200:customerorders;

@orders = @customer.GetAttribute(cootx, #APPDUCXSAMPLE@200.200:

 customerorders);

@orderdate = @order.GetAttributeValue(cootx, #APPDUCXSAMPLE@200.200:

 orderdate);

@order.APPDUCXSAMPLE@200.200:orderdate = coonow;

@order.SetAttributeValue(cootx, #APPDUCXSAMPLE@200.200:orderdate, 0,

 coonow);

@engname = @product.GetAttributeString(cootx, #mlname, #LANG_ENGLISH);

@gername = @product.GetAttributeString(cootx, #mlname, #LANG_GERMAN);

@description = @product.GetAttributeStringEx(cootx, #APPDUCXSAMPLE@200.200:

 productdescription, null, null, 0x1000);

1.9 Invoking Use Cases

Syntax

object.usecase(value, value,… , name: value, name: value, …)

A use case can only be invoked on an object. The full reference of the use case to be invoked

must be provided, followed by the list of parameters, which must be enclosed in parentheses.

Multiple parameters must be separated by commas.

You do not need to specify optional parameters. They can be omitted in the parameter list.

The parameter list consists of two parts. The first parameters are supplied by position. After

that, name:value pairs can be written to set the parameters by name.

There are four methods for retrieving output parameters in app.ducx expression language:

• If the method supplies has a parameter which is marked as return value, the method call

can be used like a function.

 Fabasoft app.ducx Expressions 39

• If you need to retrieve only one output parameter, the selection operator [] specifying the

result parameter position can be used.

• If you need to retrieve the method object of the call, the selection operator [...] can be

used.

• If you need to retrieve multiple output parameters, variables must be specified for the

output parameters in the parameter list and prefixed with an ampersand (&).

Example

// Optional parameters can be omitted

@order.COODESK@1.1:ShareObject(, , #APPDUCXSAMPLE@200.200:customerorders,

 @customer);

// "null" can also be passed in for optional parameters

@order.COODESK@1.1:ShareObject(null, null, #APPDUCXSAMPLE@200.200:

 customerorders, @customer);

// using parameter names

@order.COODESK@1.1:ShareObject(view: #APPDUCXSAMPLE@200.200:

 customerorders, target: @customer);

// Retrieving an output parameter: method 1 – using the return value

@neworder = #APPDUCXSAMPLE@200.200:Order.ObjectCreate();

// Retrieving an output parameter: method 2 – specify the return value

@neworder = #APPDUCXSAMPLE@200.200:Order.ObjectCreate()[2];

// Retrieving an output parameter: method 3

method @meth = #APPDUCXSAMPLE@200.200:Order.ObjectCreate()[...];

@neworder = @meth.GetParameter(2);

// Retrieving an output parameter: method 4

#APPDUCXSAMPLE@200.200:Order.ObjectCreate(null, &@neworder);

1.10 Calculated Identifiers / Dynamic Invocation

Syntax

// Accessing a property using a calculated identifier

object.[expression]

// Invoking a use case using a calculated identifier

object.[expression](parameter, ...)

The selection operator [] can be used to specify an expression yielding a calculated identifier

for accessing a property or invoking a use case.

For a calculated identifier, the expression specified in square brackets is evaluated, and then

the result is interpreted as a property definition, entry key in a dictionary, an action or a use

case.

Example

// Assigning a value to a calculated property

@attrdef = #APPDUCXSAMPLE@200.200:orderdate;

@order.[@attrdef] = coonow;

// Invoking a use case using a calculated identifier

@createinvoice = #APPDUCXSAMPLE@200.200:CreateInvoice;

@customer.[@createinvoice](@orders, &@invoice);

If the expression of the selection operator [] is a list of property definitions, then the list is

interpreted as a path:

 Fabasoft app.ducx Expressions 40

Example

// Accessing a value to a calculated property path

@attrdefs = [#objlock, #objlockedby, #objname]

string lockingusername = cooobj.[@attrdefs]

The selection operator [] can also be used with dictionaries, then the expression of the

selection operator [] contains one or more strings identifying the entry keys in the dictionary.

Note:

• It is not possible to mix property definitions and strings in the expression of the selection

operator [] to access object/aggregate properties and dictionary entries in one step.

• Only one action or use case can be specified, not a list.

• Dynamic invocation can also be used with the -> operator invoking applications or dialogs.

1.11 Accessing the Transaction Context

The cootx variable can be used to access the current transaction context. The most important

methods of a transaction are listed in the following table.

Method Description

Abort() Abort aborts the current transaction and rolls back

any changes.

Commit() Commit closes the current transaction and stores any

changes.

CommitEx(flags) CommitEx closes the current transaction and stores

any changes.

Additionally, the following flags are supported:

• COOCF_NORMAL

Normal commit

• COOCF_KEEPONFAILURE

If commit fails, all transaction data is kept

• COOCF_KEEPREFRESHINFO

After commit the refresh info of all touched

object is kept

• COOCF_KEEPSEARCHINFO

After commit the search info of the searches

executed in this transaction is kept

• COOCF_KEEPVARIABLES

After commit all transaction variables are kept

• COOCF_KEEPLOCKS

After commit all locks of objects are kept

• COOCF_KEEPOBJECTS

After commit all modified objects are stored in

 Fabasoft app.ducx Expressions 41

the transaction variable
COOSYSTEM@1.1:TV_COMMITTEDOBJECTS

• COOCF_NOTELESS

If specified the properties

COOSYSTEM@1.1:objmodifiedat and

COOSYSTEM@1.1:objchangedby are not set. This

flag is only allowed, if the current user has the

role COOSYSTEM@1.1:SysAdm and the current user

is registered in

COOSYSTEM@1.1:domainmasterusers of the

current domain object

Persist(object) Persist temporarily stores the state of the current

transaction without committing the changes.

Clone() Clone returns a clone of the current transaction.

HasVariable(swc, id) HasVariable checks whether transaction variable id

of software component swc contains a value. This

method returns false if if the value stored is null.

TestVariable(swc, id) TestVariable checks whether transaction variable

id of software component swc contains a value. This

method returns true even if the value stored is null.

ClearVariable(swc, id) ClearVariable removes transaction variable id of

software component swc from the transaction.

GetVariable(swc, id) GetVariable retrieves the list of values stored in

transaction variable id of software component swc.

SetVariable(swc, id, type, values) SetVariable stores the specified values in

transaction variable id of software component swc.

GetVariableValueCount(swc, id) GetVariableValueCount returns the number of

values stored in transaction variable id of software

component swc.

HasVariableValue(swc, id) HasVariableValue returns true if a transaction

variable id of software component swc is available.

GetVariableValue(swc, id) GetVariableValue retrieves a scalar value stored in

transaction variable id of software component swc.

SetVariableValue(swc, id, type,

value)
SetVariableValue stores the specified scalar value

in transaction variable id of software component

swc.

GetVariableString GetVariableString retrieves a scalar value stored

in transaction variable id of software component

swc in printable form.

 Fabasoft app.ducx Expressions 42

GetVariableStringEx GetVariableStringEx retrieves a scalar value stored

in transaction variable id of software component

swc in printable form.

GetVariableTypeDefinition(swc, id) GetVariableTypeDefinition returns the type

definition for the variable stored in transaction

variable id of software component swc.

IsClone() IsClone returns true if the transaction is a clone

transaction.

IsModified() IsModified checks whether objects were modified

within the transaction.

IsModifiedEx() IsModifiedEx checks whether any data was

modified within the transaction.

IsCreated(object) IsCreated checks whether object was created in

this transaction.

IsDeleted(object) IsDeleted checks whether object was deleted in

this transaction.

IsChanged(object) IsChanged checks whether object was changed in

this transaction.

IsAttributeChanged(object,

property)
IsAttributeChanged checks whether property of

object was changed in this transaction.

GetTransactionFlags() GetTransactionFlags retrieves the flags of the

transaction:

• COOTXF_ROLECHANGED

During the transaction an automatic role change

has been performed

• COOTXF_NOREFRESH

Objects are not automatically refreshed when

accessed with this transaction

• COOTXF_NOAUTOVERSION

During commit of the transaction no automatic

version will be created

SetTransactionFlags(flags) SetTransactionFlags allows you to set the

transaction flags (see GetTransactionFlags).

Backup() Backup returns a dump of the transaction as

printable string.

Restore(data) Restore restores the transaction from data created

by Backup().

 Fabasoft app.ducx Expressions 43

OpenScope() OpenScope starts a new transaction scope.

CloseScope() CloseScope closes the current transaction scope.

GetMaster() GetMaster returns the top most transaction of the

transaction.

In some scenarios it is necessary to carry out operations in a separate transaction. Any changes

that have been made in a new transaction can be committed or rolled back separately from the

main transaction.

Example

usecase CreateInvoice() {

 variant Order {

 impl = expression {

 // Create a new transaction

 interface @extension = coort.GetExtension();

 transaction @localtx = @extension.CreateTransaction();

 transaction @backuptx = cootx;

 try {

 coort.SetThreadTransaction(@localtx);

 Invoice @invoice = #Invoice.ObjectCreate();

 @invoice.APPDUCXSAMPLE_200_300_InitializeInvoice();

 @localtx.Commit();

 }

 catch (error) {

 @localtx.Abort();

 }

 finally {

 // Restore original transaction context

 coort.SetThreadTransaction(@backuptx);

 // Clear the variables holding the transactions

 @backuptx = null;

 @localtx = null;

 }

 }

 }

}

Note: A better and simpler way to create transactions is using the try new transaction

statement.

Working With Transaction Variables

Syntax

// Retrieving the value stored in a transaction variable

value = #TV.reference;

// Storing a value in a transaction variable

#TV.reference = value;

The #TV object is a special object that provides access to transaction variables.

Note: Transaction variables can also be accessed using the cootx variable. Please refer to

chapter 1.7.1 “Predefined Variables” for further information.

Example

 Fabasoft app.ducx Expressions 44

// Retrieving the value stored in a transaction variable

@printinvoice = #TV.TV_PRINTINVOICE;

// Storing a value in a transaction variable

#TV.TV_INVOICE = cooobj;

1.12 Control Flow

The app.ducx expression language supports common language constructs for control flow and

expression evaluation.

1.12.1 Conditions

Syntax

if (expression) {

 ...

}

else if (expression) {

 ...

}

else {

 ...

}

switch (expression) {

case constant:

 ...

 break;

case constant:

 ...

 break;

default:

 ...

 break;

}

You can use if statements in app.ducx expression language. The if keyword must be followed

by parentheses enclosing a conditional expression, and non-optional curly braces. An if block

can be followed by multiple else if blocks and an optional else block.

Example

@orderstate = @order.orderstate;

if (@orderstate == OrderState(OS_PENDING)) {

 @order.ProcessPendingOrder();

}

else if (@orderstate == OrderState(OS_SHIPPED)) {

 @order.ProcessShippedOrder();

}

else {

 throw #OrderAlreadyProcessed;

}

// lists as conditional expression are evaluated true, if the list contains at

least

// one not null element

if (["", "", "a"]) {

 true;

}

 Fabasoft app.ducx Expressions 45

Note: It is not necessary that OS_PENDING is explicitly casted (e.g. @orderstate == OS_PENDING

works, too).

The switch - case - default statement can be used to evaluate the switch expression and

execute the appropriate case.

Example

OrderState @orderstate;

switch (@orderstate){

case OS_PENDING:

 @state = 1;

 break;

case OS_SHIPPED:

 @state = 2;

 break;

default:

 @state = 0;

 break;

}

Note: Enumeration items like OS_PENDING are determined by @orderstate in the switch

statement.

1.12.2 Loops

Syntax

for (expression) {

 ...

}

while (expression) {

 ...

}

do {

 ...

} while (expression);

The app.ducx expression language contains loops with both a constant and a non-constant

number of iterations. The statements for, while, and do-while are supported. All loops have a

mandatory block.

The break statement can be used to exit a loop.

The continue statement can be used to skip the remainder of the loop body and continue with

the next iteration of the loop.

Note: continue inside a catch block does not apply to any enclosing loop.

Example

currency totalvalue = 0;

object[] orderpositions;

// Iteration with index (inefficient)

for (integer idx = 0; idx < count(orderpositions); idx++) {

 Product product = positions[idx].product;

 totalvalue += product.unitprice * positions[idx].quantity;

}

currency total = 0;

// Iteration with iterator (efficient)

 Fabasoft app.ducx Expressions 46

for (OrderPosition position : orderpositions) {

 Product product = position.product;

 if (product != null) {

 total += product.unitprice * position.quantity;

 }

}

// Iteration of a searchresult

searchresult result = FROM User;

string[] names;

for (User u : result) {

 names += u.userfirstname;

}

integer stock = product.itemsinstock;

integer threshold = product.productionthreshold;

while (stock <= threshold) {

 product.ProduceItem();

 stock++;

}

OrderState orderstate;

do {

 order.ProcessOrder(&orderstate);

} while (@orderstate != OS_COMPLETED);

Note: Avoid iterating through lists using a for loop with an index, since this is very inefficient in

large lists.

1.12.3 Exceptions and Error Handling

Exceptions are used to handle exceptional or unexpected situations that may occur during the

execution of a program. When an error situation arises, the code can throw an exception to

indicate that something unexpected has occurred. This allows the kernel to transfer control to

an appropriate exception handler, which can handle the exception gracefully.

Use try-catch-finally statements to handle exceptions. A try block must be followed by at

least one catch block, followed by an optional finally block.

If an exception occurs when processing the try block, the kernel tries to locate a catch block

with a condition matching the error message object of the exception. If no matching catch

block is found by the kernel, the error text is handled by default (e.g. shown in the UI).

A catch block can have three distinct types of conditions:

• An error message object can be specified to handle only matching exceptions.

• A variable of type integer can be specified. If an exception occurs, the error code is stored

in the specified variable, and the corresponding catch block is executed. The variable can

be used to access the error text (coort.GetErrorText(errorcode)) and the corresponding

error message (coort.GetErrorMessage(errorcode)).

• The ... operator can be specified to handle all exceptions without considering the error

code.

The optional finally block is executed after the try and catch blocks have been processed,

whether an exception occurred or not.

Example

try {

 User usr = #User.ObjectCreate(,,newaddress);

}

catch(#COOERR_INVADDR) {

 Fabasoft app.ducx Expressions 47

 /*

 * handle an invalid object address format

 */

}

catch(errorcode) {

 /*

 * handle any other error raised during object creation

 */

 string errortext = coort.GetErrorText(errorcode);

 ErrorMessage errorobject = coort.GetErrorMessage(errorcode);

}

finally {

 ...

}

Using the throw keyword, the app.ducx expression language allows you to raise an error:

• To rethrow an exception in an error handler (e.g. in a catch block), you just need to specify

the error code of the exception after the throw keyword.

• To raise a custom error, specify the error object and the arguments. If arguments are listed,

the action COOSYSTEM@1.1:RaiseError is called, which allows you to format the message

text.

Syntax

// Raising a custom error

throw errormessage, argument;

// Rethrowing an exception

throw errorcode;

Example

// Raising a custom error using a "throw" statement

throw #InvalidInvoice;

// Raising a custom error, assuming that the

// error message APPDUCXSAMPLE@200.200:InvalidInvoice contains a formatting

pattern like

// "Invoice '%s' (no. %d) is not valid!"

throw #InvalidInvoice, cooobj.objname, cooobj.invoicenumber;

To continue the execution directly after the statement raising the error the keyword continue

can be used inside the catch block.

1.12.4 Creating New Transactions or Opening a Transaction Scope

Similar to the try statement for error handling it is possible to execute a block using a separate

transaction context:

Example

try new transaction {

 // The statements in this block are executed in a new transaction context.

 // This new transaction context is also available in the cootx built-in

variable.

 Invoice @invoice = #Invoice.ObjectCreate();

 @invoice.APPDUCXSAMPLE_200_300_InitializeInvoice();

}

// After the try block an implicit Commit() or Abort() is executed on the new

// transaction context created for the try block.

 Fabasoft app.ducx Expressions 48

// If the code in the try block throws an exception, Abort() is called, else

// Commit().

// If the implicit Commit() itself throws an exception this can be handeled by

// the catch block below.

catch (...) {

 // Here you can catch exceptions that occurred during the try block or during

the

 // implicit Commit() after the try block.

 // This code is executed in the original transaction context so the

 // changes made during the try block are not available any more.

}

finally {

 // Here you can perform some additional cleanup.

 // This code is executed in the original transaction context.

}

If the new keyword is omitted, a transaction scope is opened. A transaction scope is a sub

transaction of the current transaction. When a transaction scope is committed, the changes of

that scope are propagated to the surrounding transaction. These changes are only persisted if

the surrounding transaction context is committed.

Example

try transaction {

 // The statements in this block are executed in a new transaction scope.

 // This new transaction scope is also available in the cootx built-in

variable.

 Invoice @invoice = #Invoice.ObjectCreate();

 @invoice.APPDUCXSAMPLE_200_300_InitializeInvoice();

}

// After the try block an implicit Commit() or Abort() is executed on the new

// transaction scope created for the try block.

// If the code in the try block throws an exception, Abort() is called, else

// Commit().

// Afterwards, the transaction scope is closed.

// If the implicit Commit() itself throws an exception this can be handeled by

// the catch block below.

catch (...) {

 // Here you can catch exceptions that occurred during the try block or during

the

 // implicit Commit() after the try block.

 // This code is executed in the original transaction scope so the

 // changes made during the try block are not available any more.

}

finally {

 // Here you can perform some additional cleanup.

 // This code is executed in the origina transaction scope.

}

1.12.5 Returning Values

Syntax

return expression;

The return statement can be used to stop the evaluation of an expression at any time. Each

expression has a return value, which is calculated by the expression following the return

keyword.

Note: It is not allowed to use return with a value in a method implementation.

 Fabasoft app.ducx Expressions 49

Example

if (@order != null) {

 return @order;

}

1.12.6 Directives

A directive is a special statement that does not influence the semantic of the expression.

Syntax

%%NAME(parameters);

1.12.6.1 %%TRACE

The %%TRACE directive can be used to conditionally write trace messages to the Fabasoft

app.ducx Tracer.

Syntax

%%TRACE(message);

%%TRACE(value);

%%TRACE(message, value);

Example

%%TRACE("Hello World!");

%%TRACE(cooobj);

%%TRACE("Current Object", cooobj);

%%TRACE(cooobj.objname + " locked?", cooobj.objlock.objlocked);

1.12.6.2 %%FAIL

The %%FAIL directive can be used to generate a failure. The message is written to the Fabasoft

app.ducx Tracer and an error (EXPRERR_FAIL) is raised.

Note: Like the %%TRACE directive, the %%FAIL directive is only evaluated if trace mode is

activated for your software component.

Syntax

%%FAIL;

%%FAIL(message);

Example

%%FAIL;

%%FAIL("Unexpected!");

 Fabasoft app.ducx Expressions 50

1.12.6.3 %%ASSERT

The %%ASSERT directive can be used to check conditions. In case the condition returns false, a

message is written to the Fabasoft app.ducx Tracer and an error (EXPRERR_ASSERT) is raised.

Note: Like the %%TRACE directive, the %%ASSERT directive is only evaluated if trace mode is

activated for your software component.

Syntax

%%ASSERT(condition);

%%ASSERT(message, condition);

%%ASSERT(message, expectedvalue, actualvalue);

Example

%%ASSERT(cooobj.objlock.objlocked);

%%ASSERT("'cooobj' should not be locked.", cooobj.objlock.objlocked);

@expect = "Test";

@actual = cooobj.objname;

%%ASSERT(@expected != @actual);

%%ASSERT("Expecting " + @expect + ", but actual value is '" + @actual +

 "'.", @expect, @actual);

1.12.6.4 %%DEBUGGER

The %%DEBUGGER directive can be used to set a breakpoint in a Fabasoft app.ducx Expression.

Syntax

%%DEBUGGER;

1.12.6.5 %%LOG

The %%LOG directive can be used to log messages to Fabasoft app.telemetry. app.telemetry

provides the log level LOG, IPC, NORMAL, DETAIL, and DEBUG.

Syntax

%%LOG(message);

%%LOG(level, message);

Example

%%LOG("Object created by " + cooobj.objcreatedby.objname); // Detail level

%%LOG("DEBUG", "Object created by " + cooobj.objcreatedby.objname); // Debug

level

1.13 Searching for Objects – app.ducx Integrated Query

app.ducx Integrated Queries can be used to search for objects. Integrated queries allow you to

formulate your queries directly in the expression language. Integrated queries are composed of

a series of clauses that define the data source and conditions to filter it. The basic clauses are:

 Fabasoft app.ducx Expressions 51

• FROM

This clause specifies the data source to be queried, and may introduce a condition variable

to represent each element in the data source.

• WHERE

This clause is optional and filters the data source based on a specified condition, and

returns only those elements that satisfy the condition.

• SELECT

This clause is optional and specifies which properties of the resulting objects should be

loaded into the cache. Please be aware that omitting the SELECT clause will cause the

runtime to only load the COOSYSTEM@1.1:objclass property into the cache.

Note: Integrated queries result in an asynchronous search, which means the result is of type

searchresult. You can access searchresult either using the kernel interface

(https://help.cloud.fabasoft.com/index.php?topic=doc/Reference-Documentation/interface-

CooSearchResult.htm) or by iteration (see chapter 1.12.2 “Loops”).

A complete reference of the grammar can be found in chapter 1.14 “Grammar of the app.ducx

Expression Language”.

1.13.1 FROM Clause

The FROM clause is the sole mandatory element in integrated queries. Below is an example of

the basic structure of a query to retrieve all users of a domain:

Example

searchresult allusers = FROM User

You can also retrieve objects of multiple classes, as demonstrated in the following example:

Example

searchresult allusersandgroups = FROM User, Group

Additionally, you can query object list properties using the keyword IN, as demonstrated in the

example below.

Example

searchresult folders = FROM COODESK@1.1:Folder IN cooroot.objchildren

Specifying the object class in the FROM clause limits the result to objects of only that class. For

example, if you specify COODESK@1.1:Folder as the object class in the FROM clause, the query

result will only contain objects of that class (including derived classes). You can use the property

COOSYSTEM@1.1:objclass in the WHERE clause to exclude derived classes.

1.13.2 WHERE Clause

The WHERE clause follows the FROM clause and makes it possible to filter objects using Boolean

conditions. In order to utilize WHERE clauses you will need to introduce a condition variable (e.g.

"u" in the example below) within the FROM clause that represents each element in the data

source. You can then use the condition variable within the WHERE clause to access properties.

Example

https://help.cloud.fabasoft.com/index.php?topic=doc/Reference-Documentation/interface-CooSearchResult.htm
https://help.cloud.fabasoft.com/index.php?topic=doc/Reference-Documentation/interface-CooSearchResult.htm

 Fabasoft app.ducx Expressions 52

searchresult allusers = FROM User u WHERE u.active

searchresult someusers = FROM User u WHERE u.userfirstname == "John"

Note: It is not possible to reference properties of condition variables which specify

AttrNoSearchPossible. Further, it is not possible to access properties of objects retrieved from

condition variables (e.g. u.objowner.objname).

1.13.3 SELECT Clause

In integrated queries, the SELECT clause precedes the FROM clause. The SELECT clause is used to

specify properties that should be loaded into the cache. Per default, if you omit the SELECT

clause, only the value of COOSYSTEM@1.1:objclass will be loaded.

Example

searchresult u1 = SELECT * FROM User u WHERE u.active;

searchresult u2 = SELECT userfirstname, usersurname FROM User u WHERE u.active;

1.13.4 Options

You can specify options at the beginning of an integrated query to restrict the search.

Integrated queries support the following options:

• LIMIT

Restricts the search result to the defined number of objects.

• IGNORECASE

A case-insensitive search is carried out, even if the search is configured as case-sensitive in

the domain and database.

• SCOPE

The scope allows to define a query scope object (reference or object address) that defines

the location the search is carried out.

Example: SCOPE(#COOSYSTEM@1.1:LoginQuery), SCOPE('COO.1.1.1.2686')

Example

searchresult al10 = LIMIT 10 SELECT * FROM User u WHERE u.active

1.14 Grammar of the app.ducx Expression Language

The grammar of the app.ducx Expression Language is formally defined as described below.

Grammar

Expression := { ([Statement] ";") | BlockStatement } [Statement].

Statement := VarDecl | Assume | StatementExpression | Directive |

 "break" | "continue".

BlockStatement := If | While | DoWhile | For | Switch | Try | SimpleBlock.

VarDecl := Datatype ["[]"] ["@" | "::"] ["$"] Name ["=" XpExpression].

Datatype := Identifier.

Assume := "assume" ["optional"] ["in" | "out" | "ref"]

 Datatype ["[]"] ["@" | "::"] ["$"] { Identifier "." } Name.

StatementExpression := XpExpression | Return | Throw.

Return := "return" XpExpression.

Throw := "throw" Argument { "," Argument }.

Directive := "%%" Identifier [Arguments | XpExpression].

If := "if" "(" XpExpression ")" "{" Expression "}"

 Fabasoft app.ducx Expressions 53

 ["else" (If | ("{" Expression "}"))].

While := "while" "(" XpExpression ")" "{" Expression "}".

DoWhile := "do" "{" Expression "}" "while" "(" XpExpression ")".

For := "for" "(" [VarDecl | XpExpression]

 ((";" [XpExpression] ";" [XpExpression]) | (":" XpExpression)) ")"

 "{" Expression "}".

Switch := "switch" "(" XpExpression ")" "{" { Case } "}".

Case := ("default" | ("case" XpExpression)) ":" [Expression].

Try := "try" ["new" "transaction"] "{" Expression "}" { CatchBlock }

 ["finally" "{" Expression "}"].

CatchBlock := "catch" "(" (([":>" | "::" | "@"] ["$"] Name) |

 Primary | "...") ")"

 "{" Expression "}".

SimpleBlock := "{" Expression "}".

XpExpression := Assignment | Query.

Query := ["LIMIT" Assignment | "SCOPE" "(" Assignment ")" | "IGNORECASE"]

 ["SELECT" ("*" | Identifier { "," Identifier})]

 "FROM" Identifier { "," Identifier } [Name]

 ["IN" MemberOperation]

 ["WHERE" Or].

AssignOp := "=" | "&=" | "^=" | "|=" | "+=" | "-=" |

 "*=" |"/=" | "%=" | "<<=" | ">>=" | "??=".

Assignment := Ternary [AssignOp Query].

Ternary := Coalesce { "?" XpExpression ":" XpExpression }.

Coalesce := Or { "??" Or }.

Or := And { ("or" | "OR" | "||") And }.

And := Equal { ("and" | "AND" | "&&") Equal }.

Equal := Comparison { ("==" | "!=" | "<>") Comparison }.

CompOp := "<" | ">" | "<=" | ">=" | "<=>" |

 (["sounds" | "SOUNDS"] ["not" | "NOT"] ("like" | "LIKE") |

 (["not" | "NOT"] ("in" | "contains" | "includes")) |

 (["not" | "NOT"] ("IN" | "CONTAINS" | "INCLUDES")) |

 "is" | "IS".

Comparison := Bit { (CompOp Bit) |

 (["not" | "NOT"] ("between" | "BETWEEN") Bit ("and" | "AND") Bit) }.

Bit := Add { ('|' | '&' | '^' | '<<' | '>>') Add }.

Add := Mul { ("-" | "+") Mul }.

Mul := Unary { ("*" | "/" | "%") Unary }.

UnaryOp = "!" | "not" | "NOT" | "-" | "+" | "&" | "~".

Unary := (UnaryOp Unary) | Prefix.

Prefix := ["++" | "--"] Postfix.

Postfix := MemberOperation ["++" | "--"].

MemberOperation := Primary { ("." | "->") Selector }.

Primary := (Literal | Detach | Reference | Cast | ArrayInit | StructInit |

 "(" XpExpression ")") [IndexOperations].

Detach := "->" (Identifier | ("[" XpExpression "]")) Arguments.

Cast := Identifier ["[]"] Arguments.

Reference := [":>" | "::" | "@"] ["$"] Identifier.

Selector := (("#" "$" Identifier) | "[" XpExpression "]") [Arguments]

 [IndexOperations].

Literal := Integer | Float | Hex | Date | String | StringTemplate | Null | Bool |

 ObjectLiteral | Address.

IndexOperations := { "[" IndexOperation "]" }.

IndexOperation := Slice | XpExpression | "...".

Arguments := "(" [Argument { "," [Argument] }] ")".

Argument := XpExpression | NamedArgument.

NamedArgument := Identifier ":" Argument.

Integer := Digit { Digit }.

Float := Digit { Digit } "." Digit { Digit }.

Hex := ("0x" | "0X") HexDigit { HexDigit }.

String := ("'" { Char } "'") | ('"' { Char } '"').

StringTemplate := '$"' { ("{~" XpExpression "~}") | Char } '"'.

Null := "null" | "NULL".

Bool := "false" | "true".

ObjectLiteral := "#" (Identifier | Component).

Component := "SWC" | (Identifier "@" Integer "." Integer).

Address := "COO." Integer "." Integer "." Integer "." Integer ["@" Date].

 Fabasoft app.ducx Expressions 54

Slice := [XpExpression] ":" [XpExpression].

Digit := "0" .. "9".

Digits := Digit { Digit }.

HexDigit := Digit | "a" .. "f" | "A" .. "F".

Identifier := [Component ":"] Name.

Name := ('a'..'z' | 'A'..'Z' | '_') { 'a'..'z' | 'A'..'Z' | '_' | '0'..'9' }.

Date := Digits "-" Digits "-" Digits

 [("T" | " ") Digits [":" Digits] [":" Digits]].

In general, the rule Char represents all printable characters and the following escape

sequences:
'\\' ('a' | 'b' | 'f' | 'n' | 'r' | 't' | 'v' | 'u' | 'x' | '"' | "'" |'\\')

Moreover, the start- and end symbols (e.g., '"', "'") used for strings must be escaped in order

to use them as character values inside strings. Additionally, "{" must be escaped inside string

templates.

The following reserved words cannot be used as variable names.

Reserved Words

AND, and, ASC, assume, BETWEEN, between, break, BY, case,

catch, contains, CONTAINS, continue, default, DESC, do,

else, false, finally, for, FROM, if, IGNORECASE, import,

in, IN, includes, INCLUDES, is, IS, like, LIKE, LIMIT,

new, NOT, not, NULL, null, optional, or, OR, ORDER, out, ref,

return, SCOPE, SELECT, SOUNDS, sounds, switch, throw,

TIMEOUT, transaction, true, try, WHERE, while, yield

1.15 Kernel Interfaces: Searching for Objects

The Kernel Interface Query Language can be used to search for objects. To carry out a search

the runtime methods SearchObjects and SearchObjectsAsync can be used. SearchObjects

returns the search result array at once (10,000 objects at the maximum) whereas

SearchObjectsAsync returns a searchresult, which can be used to step through the result

(without limit). Additionally, the runtime method SearchValues can be used. SearchValues

returns an aggregated value using COUNT, SUM, MIN or MAX. Using SearchValues, the evaluation of

the query conditions occurs only in the database. For security reasons this method is only

available for privileged users.

The following example shows a Fabasoft app.ducx expression that illustrates how to search for

orders at once and asynchronously.

Example

integer @bulksize = 150;

string @query = "SELECT objname FROM APPDUCXSAMPLE@200.200:Order";

// Performs a search with SearchObjects

Order[] @results = coort.SearchObjects(cootx, @query);

%%TRACE("Number of hits", count(@results));

// Performs an asynchronous search with SearchObjectsAsync()

searchresult @sr = coort.SearchObjectsAsync(cootx, @query);

Order[] @resultsasync = null;

// Steps through the search result

while ((@resultsasync = @sr.GetObjects(@bulksize)) != null) {

 %%TRACE("Fetched chunk of search results", @resultsAsync);

 for (Order @order : @resultsasync) {

 %%TRACE("Result entry", @order.objaddress);

 Fabasoft app.ducx Expressions 55

 }

}

// Count objects with SearchValues

@query = "SELECT COUNT(*) FROM APPDUCXSAMPLE@200.200:Order";

integer @objcnt = coort.SearchValues(cootx, @query);

 A search query is built up by following parts:

• Options (optional)

Options can be used to restrict the search.

• SELECT clause

In the SELECT clause properties can be defined which should be loaded in the cache.

• FROM clause

Defines the object classes that should be searched for.

• IN clause (optional)

Defines an object list that should be searched instead of the whole database.

• WHERE clause (optional)

The WHERE clause is used to restrict the search result by defining conditions.

Syntax

{Options} SELECT Properties FROM Classes [IN ObjectList] [WHERE Condition]

A complete reference of the grammar can be found in chapter 1.15.8 “Grammar of the Kernel

Interfaces Query Language”.

1.15.1 Options

In most cases, no options will be required.

• LIMIT

Restricts the search result to the defined number of objects. This setting can only be used

with SearchObjects. The maximum value is 10,000.

• PRELOAD

In case of an asynchronous search the PRELOAD value defines how many objects are fetched

in advance when stepping through the search result.

• TIMEOUT

Restricts the search time to the specified value (seconds).

Example: TIMEOUT 3

• NOCHECK

By default it is checked whether the defined properties in the SELECT clause belong to the

object classes in the FROM clause. This option disables the check.

• NOEXEC

Only a syntax check of the search query takes place, but the search itself gets not executed.

• NOHITPROPERTIES

In case of a full-text search several hit properties (hit rank, hit count, hit display) may be

displayed in the search result. With this option no hit properties are returned.

Note: A full-text search is triggered when using CONTAINS or LIKE '%%something' in the

WHERE clause.

• HITPROPERTIES

In case of a full-text search hit properties (COOSYSTEM@1.1:contenthitrank,

 Fabasoft app.ducx Expressions 56

COOSYSTEM@1.1:contenthitcount, COOSYSTEM@1.1:contenthitdisplay) can be displayed in

the search result. This option can be used to define which hit properties are returned.

Example: HITPROPERTIES(COOSYSTEM@1.1:contenthitrank)

• IGNORECASE

A case-insensitive search is carried out, even if the search is configured as case-sensitive in

the domain and database.

• Location

If no location is specified the search is carried out in the COO stores of the user’s local

domain.

o LOCAL

Restricts the search to the COO stores of the user’s local domain.

o GLOBAL

The search is carried out in all known domains.

o DOMAINS

Restricts the search to the defined domains (list of addresses of the domain objects).

Example: DOMAINS('COO.200.200.1.1','COO.200.200.1.7')

o CACHE

Restricts the search to the kernel cache.

o TRANSACTION

Restricts the search to objects belonging to the current transaction.

o SCOPE

The scope allows to define a query scope object (reference or object address) that

defines the location the search is carried out.

Examples: SCOPE(#LoginQuery) / SCOPE('COO.1.1.1.2686')

o SERVICES

Restricts the search to the defined COO services.

o STORES

Restricts the search to the defined COO stores.

o ARCHIVES

Restricts the search to the defined archive stores.

1.15.2 Properties

It is useful to define properties that are accessed later on because these properties are loaded

in the cache. When accessing these objects, no further server request is necessary to read the

defined properties.

SELECT * loads all properties in the cache and therefore should only be used if many

properties are used further on.

1.15.3 Classes

Objects of the defined object classes (and derived object classes) are searched. If derived object

classes should not be found use the property objclass in the WHERE clause.

Example

SELECT objname FROM User WHERE .objclass = #User

 Fabasoft app.ducx Expressions 57

1.15.4 Object List

In case an IN clause is supplied the search is restricted to the objects which are contained in the

list. The conditions are evaluated within the database, the FROM clause is optional. This feature

can be used to filter object lists without loading all objects.

Example

// Returns all children starting with the letter A.

SELECT objname IN COO.1.2.3.4.objchildren WHERE .objname LIKE 'A%'

// Returns all child folders.

SELECT objname FROM COODESK@1.1:Folder IN COO.1.2.3.4.objchildren

Restrictions: The CACHE keyword is not supported for list queries, this also means that only

objects stored within the COO Service can be found. In case of a container-based installation,

the component objects are stored within the Kernel cache of the container image, and

therefore also cannot be found.

1.15.5 Condition

Supplying values for properties restricts the results further. Following general rules apply:

• Fully qualified references are used to define the properties. COOSYSTEM@1.1 may be omitted

for properties belonging to this software component.

• It is good practice to start the reference with a period to make clear that the property

belongs directly to the object and is not part of a compound type.

• Compound types can be accessed using a property path.

Example: .COOMAPI@1.1:emailinformation.COOMAPI@1.1:emailaddress

• As object constants use the object addresses.

• String constants are defined with double quotes " or single quotes '. Special characters like "

and ' can be escaped with a backslash \.

• Date/Times have to be provided this way: yyyy-mm-dd hh:mm:ss

• Dates can also be provided using the short form: yyyy-mm-dd

• Expression keywords can be used as values

Example: .objowner = coouser

Following keywords can be used to specify a condition:

• NOT

The expression yields the value true if the operand evaluates to false, and yields the value

false if the operand evaluates to true.

• AND

Indicates whether both operands are true.

• OR

Indicates whether either operand is true.

• <, <=, >, >=, =, <>

Compares two operands: less, less equal, greater, greater equal, equal, not equal

• [SOUNDS] [NOT] LIKE

LIKE determines whether the left string matches the right string. The %, *, ?, and _ wildcards

can be used in the right string operand and cannot be escaped. The LIKE operator can be

preceded by the SOUNDS keyword for a phonetic comparison.

 Fabasoft app.ducx Expressions 58

Example: WHERE COOMAPI@1.1:emailinformation.COOMAPI@1.1:emailaddress LIKE
"*fabasoft.com"

• [NOT] CONTAINS

Triggers a full text search.

Example: WHERE COOSYSTEM@1.1:contcontent CONTAINS 'Workflow'

• [NOT] IN

Determines whether the value is in the defined list.

• [NOT] INCLUDES

Determines whether the value of the right operand is an element of the list provided in the

left operand.

• [NOT] BETWEEN ... AND ...

Determines whether the value is between the specified boundaries.

• IS [NOT] NULL

Determines whether the property has a value.

• UPPER

Converts all characters of a property to upper case (string data type).

• LOWER

Converts all characters of a property to lower case (string data type).

• SUM

Calculates the sum of all property values (numeric data type).

• AVG

Calculates the average of all property values (numeric data type).

• COUNT

Calculates the number of elements of a property (any data type).

• MIN

Calculates the smallest value of all property values (numeric, string, date data type).

• MAX

Calculates the largest value of all property values (numeric, string, date data type).

1.15.6 Search Query Examples

The following example shows a variety of search queries.

Example

// Returns all Note objects

SELECT objname FROM NOTE@1.1:NoteObject

// Returns contact persons with "Jefferson" in COOSYSTEM@1.1:usersurname

SELECT objname FROM FSCFOLIO@1.1001:ContactPerson WHERE .usersurname =

'Jefferson'

// The settings in the query scope object restrict the search

// Account objects are returned that reference the current user as owner

SCOPE (#FSCFOLIOCRM@1.1001:CRMQueryScope)

SELECT * FROM FSCFOLIOCRM@1.1001:Account WHERE .objowner = coouser

// The search is restricted to the domain with object address COO.1.1900.1.1

DOMAINS ('COO.1.1900.1.1') SELECT .objname FROM CurrentDomain

// Returns users that are created between the last hour and last half-hour

SELECT objname FROM User

WHERE (.objcreatedat >= coonow-60*60) AND (.objcreatedat < coonow-30*60)

// Returns users with a task in the task list

SELECT objname FROM User WHERE .COOAT@1.1001:attasklist IS NOT NULL

 Fabasoft app.ducx Expressions 59

// A query scope object is used and the search is restricted to 100 result

entries

SCOPE (#FSCLEGALHOLD@1.1001:LegalHoldQueryScope)

LIMIT 100 SELECT objname FROM Object

WHERE .FSCLEGALHOLD@1.1001:objlegalholds.objowner = coouser

The following example shows a value query using SearchValues.

Example

// Returns the biggest content size of all content objects

coort.SearchValues(cootx, "SELECT MAX(.content.contsize) FROM ContentObject")

1.15.7 Query Arguments

It is often necessary to use query conditions which are supplied by method parameters or even

user input. Therefore, it is possible to use variables within the query to avoid building the query

string which requires the use of the correct escaping rules. The values are supplied as key/value

pairs (DICTIONARY), so the key can be used as variable name to reference its value. Variable

names are prefixed with a dollar sign ($). Variables cannot be used to replace attributes,

operators or query keywords.

Variables can be used at the following places:

LIMIT $limit

PRELOAD $preload

TIMEOUT $timeout

SERVICES($services)

SCOPE($scope)

DOMAINS($domains)

STORES($stores)

EVALUATE $objects

FROM $classes

IN $object.attrdef

WHERE .attrdef = $value

1.15.8 Grammar of the Kernel Interfaces Query Language

The grammar of the app.ducx Query Language is formally defined as described below.

Grammar

app.ducx Query Language

Statement := { Options } (Query | ValueQuery | Evaluation).

Query := "SELECT" Attributes

 ("FROM" Classes ["IN" ObjectList] | "EXECUTE" Procedure)

 ["WHERE" Condition].

Example

// Returns the first ten objects found which are named "Test"

coort.SearchObjects(

 cootx,

 "LIMIT $limit SELECT * FROM $class WHERE .objname = $name",

 { limit: 10, class: #Object, name = "Test" });

coort.SearchObjects(

 cootx,

 "SELECT * IN $folder.objchildren WHERE .objowner = $user",

 { folder: COO.1.2.3.4, user: coouser });

 Fabasoft app.ducx Expressions 60

ValueQuery := "SELECT" (AggregateExpression | ColumnExpression)

 "FROM" Classes ["WHERE" Condition].

Evaluation := "EVALUATE" Sequence "WHERE" Condition.

Options := ("LIMIT" Integer | "PRELOAD" Integer | "TIMEOUT" Integer |

 "NOCHECK" | "NORESTRICTIONS" | "NOEXEC" |

 "NOHITPROPERTIES" | "HITPROPERTIES" "(" Attributes ")" |

 "IGNORECASE" | Location).

Location := ("CACHE" | "TRANSACTION" | "LOCAL" | "INSTALLATION" | "GLOBAL" |

 "SERVICES" "(" Service { "," Service } ")" |

 "SCOPE" "(" Scope ")" |

 "DOMAINS" "(" Domain { "," Domain } ")" |

 "STORES" "(" Store { "," Store } ")").

Attributes := ("*" | Attribute { "," Attribute } | Expression).

Classes := Class { "," Class }.

ObjectList := (Reference | Object | Ident) { "." Attribute }.

Condition := Term { "OR" Term }.

Term := Factor { "AND" Factor }.

Factor := ["NOT"] Primary.

Primary := (Predicate | "(" Condition ")").

Predicate := Expression

 [(("<" | "<=" | ">" | ">=" | "=" | "<>") Expression |

 ["SOUNDS"] ["NOT"] "LIKE" Shift { "," Shift } |

 ["NOT"] "CONTAINS" Shift { "," Shift } |

 ["NOT"] "IN" "(" (Sequence | Query) ")" |

 ["NOT"] "INCLUDES" "(" (Sequence | Query) ")" |

 ["NOT"] "BETWEEN" Shift "AND" Shift |

 "IS" ["NOT"] "NULL")].

Expression := (Identifier |

 [("UPPER" | "LOWER" | "SUM" | "AVG" | "COUNT" | "MIN" | "MAX")]

 "(" (Identifier | Shift) ")" |

 Shift).

AggregateExpression := ("SUM" | "COUNT" | "MIN" | "MAX")

 "(" Identifier ")".

ColumnExpression := ["DISTINCT"] Identifier.

Attribute := (Reference | Object).

Class := (Reference | Object).

Procedure := (Reference | Object).

Identifier := ["."] { Reference "." } Reference).

Domain := (String | Object).

Service := (String | Object).

Scope := (String | Object).

Letter := "a" ... "z" "A" ... "Z".

Digit := "0" ... "9".

HexDigit := "0" ... "9" "a" ... "f" "A" ... "F".

Digits := Digit { Digit }.

HexDigits := HexDigit { HexDigit }.

Name := Letter { (Letter | Digit | "_") }.

Reference := Name ["@" Digits "." Digits [":" Name]].

String := ("'" ... "'" | '"' ... '"').

Integer := (Digits | "0" ("x" | "X") HexDigits).

Float := Digits "." [Digits]

 [("d" | "D" | "e" | "E") [("+" | "-")] Digits].

DateTime := Digits "-" Digits "-" Digits

 [("T" | " ") Digits [":" Digits [":" Digits]]].

Object := (Address | "#" Reference).

Address := "COO." Digits "." Digits "." Digits "." Digits ["@" DateTime].

The grammar of the app.ducx Query Language partially refers to the grammar of the Kernel

Interfaces Expression Language.

1.15.9 Grammar of the Kernel Interfaces Expression Language

Grammar

 Fabasoft app.ducx Expressions 61

Kernel Expression Language

Expression := { Statement }.

Statement := (";" | Directive ";" | Block | Declare ";" |

 If | For | While | Switch | Try |

 Do ";" | Break ";" | Continue ";" | Return ";" | Throw ";" |

 Sequence [";"]).

Directive := "%%" Name [(Sequence | "(" [Sequence] ")")].

Block := "{" Expression "}".

Declare := "declare" [">" | "&" | "<"] Ident { "," [">" | "&" | "<"] Ident }.

If := "if" "(" Cond ")" Block ["else" (If | Block)].

For := "for" "(" Sequence (";" [Cond] ";" Sequence | ":" Statement) ")"

 Block.

While := "while" "(" Cond ")" Block.

Do := "do" Block "while" "(" Cond ")".

Switch := "switch" "(" Cond ")" "{"

 { ("case" (Ident | Const) | "default") ":" [Expression] } "}".

Break := "break".

Continue := "continue".

Return := "return" [Assign].

Try := "try" [["new"] "transaction"] Block {

 "catch" "(" (Object | [("@" | "::" | ":>")] Ident | "...") ")" Block }

 ["finally" Block].

Throw := "throw" Cond Arguments.

Items := [Init] { "," [Init] }.

Sequence := [Assign] { "," [Assign] }.

Arguments := [Assign] { "," [Assign] }.

Init := Cond [(":" | "=") Assign].

Assign :=

 Cond [["[]"] [("@" | "::" | ":>")] Ident]

 [("=" | "&=" | "^=" | "|=" | "<<=" | ">>=" |

 "+=" | "-=" | "*=" | "/=" | "%=" | "??=") Assign].

Cond := Coalesce ["?" Sequence ":" Coalesce].

Coalesce := Or { "??" Or }.

Or := And { ("||" | "or") And }.

And := BitOr { ("&&" | "and") BitOr }.

BitOr := BitXOr { "|" BitXOr }.

BitXOr := BitAnd { "^" BitAnd }.

BitAnd := Equal { "&" Equal }.

Equal := Rel [("==" | "!=" | "<>") Rel].

Rel := Shift [(("<" | "<=" | ">" | ">=" | "<=>") Shift |

 ["sounds"] ["not"] "like" Shift |

 ["not"] "contains" Shift |

 ["not"] "in" Shift |

 ["not"] "includes" Shift |

 ["not"] "between" Shift "and" Shift |

 "is" ["not"] "null")].

Shift := Add { ("<<" | ">>") Add }.

Add := Mul { ("+" | "-") Mul }.

Mul := Prefix { ("*" | "/" | "%") Prefix }.

Prefix := (Postfix |

 ("&" | "++" | "--" | "!" | "not" | "~" | "+" | "-") Prefix).

Postfix := (Primary { "." Qualifier |

 "(" Arguments ")" ["[" ("..." | Cond) "]"] |

 "[" Sequence "]" |

 "++" | "--" |

 "->" Qualifier "(" Arguments ")" ["[" Cond "]"] } |

 "->" Qualifier ["(" Arguments ")" ["[" Cond "]"]]).

Qualifier := (Ident | Reference | "[" Sequence "]").

Primary := (

 "@" ("this" | Ident) |

 "::" ("this" | Ident | Reference) |

 ":>" ("this" | Ident | Reference) |

 "this" | Ident | Reference |

 "[]" | "null" | "true" | "false" |

 "coort" | "cootx" | "cooobj" | "coometh" | "coocontext" |

 "coouser" | "coogroup" | "cooposition" |

 Fabasoft app.ducx Expressions 62

 "cooenv" | "cooroot" | "coohome" | "coolang" | "coodomain" | "coonow" |

 (["upper" | "lower" | "count" | "sum" | "avg" | "min" | "max"]

 "(" Sequence ")") |

 "insert" "(" Assign "," Assign "," Assign ")" |

 "delete" "(" Assign "," Assign ["," Assign] ")" |

 "find" "(" Assign "," Assign ")" |

 "sort" "(" Assign ")" |

 "unique" "(" Assign ")" |

 "revert" "(" Assign ")" |

 "super" "(" ")" |

 "typeof" "(" Assign ")" |

 "indexof" "(" Assign "," Assign ")" |

 "strlen" "(" Assign ")" |

 "strtrim" "(" Assign ")" |

 "strhead" "(" Assign "," Assign ")" |

 "strtail" "(" Assign "," Assign ")" |

 "strsplit" "(" Assign "," Assign ")" |

 "strjoin" "(" Assign ["," Assign] ")" |

 "strreplace" "(" Assign "," Assign ["," Assign] ")" |

 "(" Sequence ")" |

 "{" Items "}" |

 "[" Sequence "]" |

 '$"' ... '{~' Assign '~}' { ... '{~' Assign '~}' } ... '"'

 Const).

Const := (String | DateTime | Object |

 ["+" | "-"] Integer | ["+" | "-"] Float).

Ident := ("$" | ["$"] Name).

Letter := "a" ... "z" "A" ... "Z".

Digit := "0" ... "9".

HexDigit := "0" ... "9" "a" ... "f" "A" ... "F".

Digits := Digit { Digit }.

HexDigits := HexDigit { HexDigit }.

Name := Letter { (Letter | Digit | "_") }.

Reference := Name ["@" Digits "." Digits [":" Name]].

String := ("'" ... "'" | '"' ... '"').

Integer := (Digits | "0" ("x" | "X") HexDigits).

Float := Digits "." [Digits]

 [("d" | "D" | "e" | "E") [("+" | "-")] Digits].

DateTime := Digits "-" Digits "-" Digits

 ("T" | " ") Digit Digit ":" Digit Digit ":" Digit Digit.

Object := (Address | "#" Reference).

Address := "COO." Digits "." Digits "." Digits "." Digits ["@" DateTime].

	1 Fabasoft app.ducx Expressions
	1.1 General Remarks Concerning app.ducx Expression Language
	1.1.1 Evaluating Expressions at Runtime
	1.1.2 Testing Expressions
	1.1.3 Tracing in app.ducx Expression Language

	1.2 Names
	1.3 Scopes
	1.4 Types
	1.4.1 Boolean
	1.4.2 Integer
	1.4.3 Float
	1.4.4 String
	1.4.5 Datetime/Date
	1.4.6 Currency
	1.4.7 Content
	1.4.8 Dictionary
	1.4.9 Object
	1.4.10 Any

	1.5 Variables
	1.5.1 Redeclaration of Variables
	1.5.2 Declaration of Available Variables
	1.5.3 Declaration of Dictionary Members

	1.6 Operators
	1.6.1 Assignment Operators
	1.6.2 Logical Operators
	1.6.3 Calculation Operators
	1.6.4 Comparison Operators
	1.6.5 Conditional Operator
	1.6.6 Selection Operator
	1.6.7 $ Operator
	1.6.7.1 Identifier
	1.6.7.2 String Interpolation

	1.6.8 # Operator

	1.7 Predefined Variables and Functions
	1.7.1 Predefined Variables
	1.7.2 Popular Kernel Methods
	1.7.3 Working With Contents
	1.7.4 Working With Dictionaries
	1.7.5 Getting the Data Type of an Expression
	1.7.6 String Functions
	1.7.7 List Functions
	1.7.8 Mathematical Functions
	1.7.9 Escape Sequences for Special Characters

	1.8 Getting and Setting Property Values
	1.9 Invoking Use Cases
	1.10 Calculated Identifiers / Dynamic Invocation
	1.11 Accessing the Transaction Context
	1.12 Control Flow
	1.12.1 Conditions
	1.12.2 Loops
	1.12.3 Exceptions and Error Handling
	1.12.4 Creating New Transactions or Opening a Transaction Scope
	1.12.5 Returning Values
	1.12.6 Directives
	1.12.6.1 %%TRACE
	1.12.6.2 %%FAIL
	1.12.6.3 %%ASSERT
	1.12.6.4 %%DEBUGGER
	1.12.6.5 %%LOG

	1.13 Searching for Objects – app.ducx Integrated Query
	1.13.1 FROM Clause
	1.13.2 WHERE Clause
	1.13.3 SELECT Clause
	1.13.4 Options

	1.14 Grammar of the app.ducx Expression Language
	1.15 Kernel Interfaces: Searching for Objects
	1.15.1 Options
	1.15.2 Properties
	1.15.3 Classes
	1.15.4 Object List
	1.15.5 Condition
	1.15.6 Search Query Examples
	1.15.7 Query Arguments
	1.15.8 Grammar of the Kernel Interfaces Query Language
	1.15.9 Grammar of the Kernel Interfaces Expression Language

